
NASA / C R--2002-211910

Efficient Reformulation of HOTFGM:

Heat Conduction With Variable

Thermal Conductivity

Yi Zhong and Marek-Jerzy Pindera

University of Virginia, Charlottesville, Virginia

November 2002



The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key part

in helping NASA maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the Lead Center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the

NASA STI Database, the largest collection of
aeronautical and space science STI in the world.

The Program Office is also NASA's institutional
mechanism for disseminating the results of its

research and development activities. These results

are published by NASA in the NASA STI Report
Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of
NASA programs and include extensive data

or theoretical analysis. Includes compilations

of significant scientific and technical data and
information deemed to be of continuing

reference value. NASA's counterpart of peer-

reviewed formal professional papers but

has less stringent limitations on manuscript

length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not

contain extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other

meetings sponsored or cosponsored by
NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to NASA's
mission.

Specialized services that complement the STI
Program Office's diverse offerings include

creating custom thesauri, building customized
databases, organizing and publishing research

results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

Access the NASA STI Program Home Page

at http://www.sti.nasa.gov

E-mail your question via the Internet to

help@sti.nasa.gov

Fax your question to the NASA Access

Help Desk at 301-621-0134

Telephone the NASA Access Help Desk at
301-621-0390

Write to:

NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076



NASA / C R--2002-211910

Efficient Reformulation of HOTFGM:

Heat Conduction With Variable

Thermal Conductivity

Yi Zhong and Marek-Jerzy Pindera

University of Virginia, Charlottesville, Virginia

Prepared under Grant NAG3-2524

National Aeronautics and

Space Administration

Glenn Research Center

November 2002



Acknowledgments

This research was conducted under funding through the NASA Glenn Grant NAG3-2524. The NASA technical

monitor for this project was Dr. Steven M. Arnold whose support and encouragement for the undertaken

investigation, the authors gratefully acknowledge.

NASA Center for Aerospace Information
7121 Standard Drive

Hanover, MD 21076

Available from

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22100

Available electronically at http://gltrs.grc.nasa.gov



Efficient Reformulation of HOTFGM: Heat Conduction

With Variable Thermal Conductivity

Yi Zhong and Marek-Jerzy Pindera

University of Virginia

Charlottesville, Virginia 22903

Abstract

Ftmetionally graded materiah (FGMz) have become one of the major research topies in the

meehanies of materials community during the past fifteen years. FGMs are heterogeneous ma-

terials, character_ by spatially variable microstructures, and thtm spatially variable macrt_-

scopic properties, introduced to enhance material or structural performance. The spatially
variable material properti_ make FGMs challenging to analyze. The review of the variotm

tedmiques employed to analyze the thermomechanical response of FGMs reveals two ¢Kstinct

and ftmdamentally different computational strategies, called uncoupled macromechanical and

coupled micrt>-macromechanical approadms by some investigators. The uncoupled macmme-

chanical approach_ ignore the effect of microstructural gradation 1)37employing specific spatial

variations of material propertie_, which are either a_sumed or obtained by local homogenization,

thereby resulting in erroneous results under certain circumstances. In contrast, the coupled ap-

proadms explicitly atx_unt for the micro-macrostructural interaction, albeit at a significantly

higher computational cost. The higher-order theorT for ftmctionally grack_ materials (HOT-
FGM) developed by Aboudi et al. (1999) is representative of the coupled approach. However,

despite its chmonstrated utility in applications where micrt>-macrostructural coupling effects are

important, the theory's full potential is yet to be realized becatme the original formulation of
HOTFGM is computationally intensive. This, in turn, limits the size of problems that can be

solved due to the large number of equations required to mimic realistic material micrastruc-

tures. Therefore, a beL_is for an efficient reformulation of HOTFGM, referred to as truer-friendly
formulation, is developed herein, and subsequently employed in the construction of the efficient

reformulation using the local/global conductivity matrix approach. In order to extend HOT-

FGM's range of applicability, spatially variable thermal conductivity capability at the local level
is incorporated into the efficient reformulation. Analytical solutions to validate both the tL_er-

friendly and efficient reformulations are al_ developecL Volume discretization sensitivity and

validation studies, as well as a practical application of the developed efficient refommlation, are

subsequently carried out. The presented results illustrate the accuracy and implementabilitv of
both the user-friendly formulation and the efficient reformulation of HOTFGI_I.

1 Introduction

Functionally graded materials (FGMs) have become one of the major research topics in the me-

chanics and materials communities during the past fifteen years. FGMs are heterogeneous materials

which are composed of two or more phases with different properties, and therefore they belong to
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the broad class of materials known as composites. Unlike traditional composites, however, the spa-

tial distribution of phases in FGIVIs is not statistically homogeneous. As the name suggests, FGMs

are materials with macroscopic properties characterized by spatial gradients. This is accomplished

by using variable spacings between individual inclusions or by using inclusions with different prop-

erties, sizes and shapes. Research results obtained thus far have demonstrated that FGMs have

great potential for improving material/structural performance in many engineering applications

precisely because of their spatially graded heterogeneous microstructure. In particular, grading or

tailoring the internal microstructure of a composite material or structural component enables the

designer to integrate both the material and structural aspects into the final design and product.

This offers a number of advantages over traditional methods of tailoring composite materials and

structural components through the elimination of sharp material discontinuities which often lead

to undesirable stress concentrations, thereby degrading the structural component's strength and
durability.

The concept of modern man-made FGMs was first proposed in 1984 by material scientists in

the Sendal area of Japan as a means of developing thermal protection materials. In particular, this

concept was originally conceived for thermal protection of fuselage exterior and engine materials

intended for use in high-speed civil transport aircraft under development in the mid 1980's through

mid 1990's, and then rapidly spread to other fields including physics, chemistry, agriculture, biology

and medicine. After almost twenty years of development, the term FGM is now widely used in

various fields to describe this class of materials. Strictly speaking, however, graded materials are not

new. They can be found in nature, and they also have been utilized extensively by human beings

for many years without being explicitly called FGMs. The examples include graded materials

developed long ago, such as case-hardened steel, which are still in common use today, Kaysser and

IIschner (1995). Other naturally occurring biological FGMs include bamboo, which has been used

for a long time for structural components, corn, barley, etc., Figure 1. Nevertheless, the new and

exciting thing about modern FGMs is the realization that the property gradient can be designed

at the microstructural level to tailor the material's specific function and performance required by
engineering needs.

As stated in the foregoing, FGMs are excellent candidates for applications involving severe

thermal gradient environments. Some practical examples of the successful application of the FGM
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conceptinclude zirconia coatings deposited on a nickel-chromium alloy substrate by plasma spray-

ing, where the composition profiles of the graded interlayers are careftdly optimized to minimize

thermally-induced stresses under service loading conditions. By appropriately adjusting the mi-

crostructural transition, that is by placing the ceramic-rich part of a functionally graded material

in the high temperature environment and the metallic-rich part in the low temperature environ-

ment, with a gradual microstructural transition in the direction of the temperature gradient_ it

is possible to achieve optimum temperature, deformation and stress distributions. An example

of a graded thermal barrier coating is given in Figure 2. In this case_ the requirements for heat-

resistant and oxidation-resistant properties are fulfilled, as well as those for adequate mechanical

toughness. In another successful application, Honda Engineering Co. Ltd. developed a functionally

graded cemented carbide with improved wear resistance and tool life, owing to a coarse grain size

and smaller cobalt content in the surface region than in the core region with a graded interlayer_

Ichikawa (2001). Thus the highest hardness was achieved in the surface layer while the toughness
increased towards the core region.

Figm_ 2. Graded ceramic-metal thermal barrier coating (Source: Dollmeier et al. 1995).

There is no doubt that FGMs offer substantial advantages over traditional composites in the

design of structural components which require different types of materials to simultaneously satisfT

various requirements such as load bearing capabUity, surface protection, and perhaps decorative

function. In particular, it has been demonstrated that microstructural gradients not only can over-

come problems associated with traditional composites by smoothing out property discontinuities,

but can also produce unique and desirable functions, such as focusing light in fibers, channel-

ing heat in computer chips_ and providing biocompatible implant-tissue transitions in biomedical

engineering applications_ for instance.

However, there are many challenges that must be overcome in order to make full use of the FGM

potential, Ilschner (1997). Materials researchers agree that the FGM manufacturing capabilities

and material development are not in a dynamic growth phase comparable to that which occurred

during the 1960-1980 period for the then-emerging materials such as plastics. The reason is that

with the present state of knowledge, it is very difficult and expensive to fabricate graded materials

with various designed functions in large quantities for industrial use. Moreover, at the present

time_ mature design standards and test methods for FGMs are insui_cient or unavailable. Just as

importantly, the multiscale approach required in the analysis, design and optimization of FGMs

is still not well developed. The present investigation, therefore, was undertaken to address this

last point, as will be discussed in more detail later. The literature review of the following section

provides the motivation for the undertaken study.
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1.1 Literature Review

In this section, a brief overview of the FGM development is given for completeness, followed by

a discussion of theoretical modeling methods used to analyze FGMs. The emphasis is put on the

latter in view of the focus of this investigation which addresses one aspect of multiscale modeling
of FGMs, as discussed in the next section.

With the realization of the important role that FGMs will play in many fields, many researchers

have devoted a substantial amount of time and energy in recent years to the broad area of FGMs,

ranging from the different fabrication techniques and characterization methods to the development

of theoretical models for the response of these materials. The development and exploration of
FGMs was initiated in Japan under a national project during the period 1987-1991. The aim of

this government-sponsored project was to develop FGMs for future aerospace applications. Fol-
lowing this, similar projects and forums for FGM research and development were initiated in other

countries, in particular in Germany, Finland, China, the United States and Russia. Research on

functionally graded materials around the world increased rapidly after the First International Sym-
posium devoted solely to these materials_ which was held in Sendal, Japan in 1990. The second

International Symposium on FGMs was held in San Francisco in 1992_ followed by the Third Inter-

national Symposium held in Lausanne_ Switzerland in 1994. These symposia, which were organized

by the International Forum on FGMs, are now held every two years on a regular basis with the
next one scheduled for the fall of 2002 in Beijing, China.

As a result of the above activities, the overall research and development of FGMs has expanded

to many areas. Consequently_ many papers on different aspects of FGMs have been published in

standard journals, special issues of journals devoted solely to FGMs_ conference proceedings, and

monographs, cf. Pindera et al. (1994a, 1995a, 1997), Needleman and Suresh (1996), Yamanouchi et

al. (1990), llschner and Cherradi (1994), Shiota and Miyamoto (1997), and Suresh and Mortensen

(1998). Therefore, a comprehensive review of the different research activities is outside the scope

of this report. Therefore_ in keeping with the investigation's focus_ an overview is provided below

of the different approaches employed by researchers to model the thermomechanical response of
FGMs.

The review of the various techniques employed to analyze the response of FGhls under thermal

and mechanical loading reveals two distinct and fundamentally different computational strategies.

These have been termed uncoupled and coupled micro-macromechanical approaches by Aboudi

et al. (1993). The uncoupled approaches do not explicitly couple the material's heterogeneous

microstructure with the structural global analysis. Local effective or macroscopic properties at a

given point within the FGM are first obtained through homogenization based on a chosen micro-

mechanics scheme_ and subsequently used in a global thermomechanical analysis. Figure 3. The

response of an FGM under specified loading at a homogenized material point with equix_lent prop-

erties is obtained by solving the governing differential equations (partial or ordinary) with variable

coefficients which represent the spatially macroscopic material property variation obtained from

homogenization. Sometimes, the spatial property variation is represented as piece-wise uniform

which is accomplished by discretizing the microstructure into layers or strips with uniform proper-

ties that change gradually from layer to layer. Clearly, by employing only effectix_ or homogenized

properties in the global FGM analysis, the microstructural details can only affect the FGM in an
effective or average way. It is in this sense that the approach is uncoupled.

The key assumption made in the uncoupled approach is that the heterogeneous microstructure

of an FGM can be replaced by an equivalent continuum with a set of macroscopic properties that

vary with spatial coordinates in a manner commensurate with the material's heterogeneity. The

various micromechanical approaches that may be used to calculate homogenized material properties
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Figure 3. Homogenization-based analysis of FGMs.

include l_euss and Voigt h)q_otheses, self-consistent schemes, Mori-Tanaka method, concentric cylin-

der models, and the Generalized Method of Cells, as discussed by Aboudi (1991). Therefore, the

use of the uncoupled micro-macromechanical approach in analyzing the response of FGMs is im-

pUcitly based on the assumption of the applicability of the representative volume element (l_VE)

concept. However, the definition of an I_VE remains to be established theoretically for materials

with spatially variable heterogeneous microstructures. In addition, ignoring the possibility of cou-

pling between local and global effects itself may result in potentially erroneous predictions. This

is especially relevant when the thermal and mechanical field variable gradients are relatively large
compared with the characteristic dimension of the inclusion phase or the number of inclusions is

small, or the dimension of the inclusion phase is large relative to the global dimension of the com-

posite, Aboudi et al. (1993, 1994). Therefore, this type of approach should be used in limited

circumstances such as when the size of the inclusion is relatively small compared with the overall

size of composite or the number of the inclusions is large, Pindera et al. (1995b).

The alternative to the uncoupled approach is the coupled approach wherein the micro-macrostructural

interaction is explicitly taken into account. This implies that the local micromechanics analysis

must be combined with the global or structural analysis in a way that connects the two scales

dh'ectly. One way to do this is to solve the entire problem directly by accounting for the presence of

every local heterogeneity. In the presence of many inclusions, the solution of the given boundary-

value problem in an exact sense is prohibitive and often impossible, necessitating development of
approximate computational strategies.
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1.1.1 The uncoupled macrostructural approach

The uncoupled approach is the simpler of the two approaches in the anal)_ical sense since it

treats the micro and macrostructura] problems separately. As a restdt, man), particular t)_es

of problems involving FGM applications have been solved using this approach. One of the most

important applications involves thermal barrier coating (TBC) problems. As discussed in the

preceding section, internal stresses can be reduced and fracture toughness can be enhanced by

appropriate choice of microstructural gradation. For instance, Fukumoto et al. (1994) addressed

the influence of coating configuration on cyclic thermal shock fracture behavior of plasma sprayed

coatings. An extensive review of the different approaches employed to evaluate temperature and

stress fields in TBCs has been recently provided by Noda (1999). In the presence of inelastic

effects_ the approaches range from one-dimensional finite-difference analyses, Kokini and Choules

(1995)_ to two-dimensional finite-element analyses based on layer-wise discretization of the coating •

microstructure with piece-wise uniform properties calculated using simple rule-of-mixtures or Mori-

Tanaka estimates, such as those by Jian et al. (1995) or Delfosse et al. (1997). Elastic analyses

often use continuously varying properties of particular functional form, thereby facilitating either

closed-form anal)_ical solutions_ or numerical solutions based on the Green's function approach_

such as those presented by Nomura and Sheahen (1997) and Sutradhar et al. (2002).

Another important application of FGMs involves joining structural components made of dis-

similar materials using graded transition regions to reduce the large interlaminar stresses that arise

at the free edge due to the material property mismatch. Analyses of these problems have been

conducted by Drake et al. (1993) and WilUamson et al. (1993) using the finite-element approach

to study the effect of material gradation on the free-edge peel stresses in layered cylinders with

gradual material variation achieved by using slightly different material properties in each cyUndri-

cal layer. Plasticity was demonstrated to be an important factor in influencing the free-edge stress

fields. Suresh et al. (1994) demonstrated similar effects in analyzing the response of elastoplastic

biomaterial strips subjected to cyclic thermal loading.

Fracture analysis is also an important area of FGMs. In a sequence of papers, Erdogen and co-

workers extended the elasticity techniques for crack-analysis problems of inhomogeneous materials

to functionally graded materials, Delale and Erdogan (1983), Erdogan (1985), Erdogan et al. (1991).

The focus of these studies were the different failure modes that occur in graded TBCs which are

initiated by free-edge cracks, and cracks parallel or perpendicular to the coating surface, as discussed

by Kokini et al. (1996) or Kawasaki and Watanabe (1997). These were subsequently analyzed by

Erdogan (1995), Erdogan and Wu (1996), Lee and Erdogan (1998), and most recently by Jin and
Paulino (2001).

Other applications of FGMs include the important problem of identifying optimum microstruc-

rural designs which produce the best temperature and stress distributions under given loading

conditions. Various analytical solutions have been developed for specific boundary-value problems

(typically involving axisymmetric fields and out-of-plane shearing) which can be incorporated into

optimization algorithms for design purposes. These anal)_ical solutions are also useful as bench-

mark solutions for the validation of finite-element, finite-difference or boundary-element techniques.

For instance, Horgan and Chan (1999) developed elastic solutions for problems involving pressur-

ized hollow cylinders, rotating disks, and bars under torsion with continuously graded isotropic

constituents. In order to enable fiber-matrix interface/interphase design and optimization in metal

matrix composites, Pindera et al. (1994b) extended the previously-developed thermoplastic solu-

tion to the problem of an arbitrary layered concentric cylinder under combined thermomechanical

axisymmetric loading, Pindera et al. (1993), by incorporating the capability to treat the interracial

layers as two-phase composite materials. The results provided insight into designing/engineering
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homogenizedandfunctionallygradedinterfacesin advancedmetal-matrix composites with the ob-

jective of generating preferred fabrication-induced residual stress distributions. Salzar and Barton

(1994) subsequently incorporated this solution strategy into a commercial optimization code and

demonstrated the et_ciency with which optimum interracial architectures could be identified.

1.1.2 The coupled micro-macrostructural approach

The coupled micro-macromechanical approach circumvents the limitations of the standard uncou-

pled approach in FGM applications by explicitly coupling the local (microstructural) and global

(macrostructural) effects. The coupled analysis can be carried out using the finite-element tech-

nique. However, this can be prohibitively expensive due to the refined volume discretization required

for convergence when dealing with even simple FGM microstructures. For this reason, alternative

approximate computational techniques are needed which are sufficiently accurate to compute the

micro-macrostru_ural interaction without requiring excessively large storge.

The representative of such a coupled micro-macromechanical approach is the higher-order theory

for ftmctionally graded materials (HOTFGM) developed by Aboudi and co-workers in a sequence of

papers and reports originating in 1993, Aboudi et al. (1993). Summaries of the different stages of

the higher-order theory have been provided by Pindera et al. (1995c, 1998), and most recently by

Aboudi et al. (1999). The theoretical framework is based on volumetric averaging of the various field

quantities, satisfaction of the field equations in a volumetric sense, and imposition in an average
sense of boundary and interracial conditions between the subvolumes used to characterize the

composite's functionally graded microstructure. The theory has been validated through comparison

with the results obtained from finite-element analysis, Pindera and Dram (1997), and subsequently

applied to the following technologically important problems:

• Investigation of the effect of microstructure on thermal and stress fields in MMC plates and
cylinders

• Investigation of the use of functionally graded architectures in reducing edge effects in MMC
plates

• Optimization of functionally graded microstructures in MMC plates and cyUnders

• Development of guidelines for the design of special coatings in exhaust nozzle applications

• Investigation of the microstructural effects in functionally graded TBCs

The results obtained so far have demonstrated that this theory is an accurate and easily imple-

mentable tool in the analysis and design of FGMs. Furthermore, comparison of the results obtained

from the standard micromechanics approach with those of HOTFGM has demonstrated the need

for a theory like HOTFGM, which explicitly couples the micro (local) and macro (global) effects
within a tmified analysis.

The recent developments of HOTFGM include extension to cylindrical coordinates to enable

analysis, design, and optimization of structural components found in aircraft engine applications,
Pindera and Aboudi (2000).

1.2 Objectives of the Investigation and Outline of the Report

Despite the demonstrated utility of the higher-order theory in applications where the micro-

macrostructural coupling effects are important, the theory's full potential has not yet been attained.
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This is because the theory as originally formulated is computationally intensive. This, in turn, lim-

its the types of problems that can be solved due to the large number of equations required to mimic

realistic material microstructures. Therefore, the objective of this investigation was to construct

a basis for an efficient reformulation of the higher-order theory, and subsequently implement it in

order to reduce the number of equations required in the solution of a given thermal boundary-value
problem. The basis for the efficient reformulation is the demonstration that the same results are

obtained when the volume discretization used in the original version is simplified by eliminating

the need to differentiate between generic cells and subcells. This is called a user-friendly formu-

lation which, in turn, provides the basis for an efficient reformulation based on the local/global

conductivity matrix approach. The efficient reformulation admits spatially variable thermal con-

ductivity within individual subcells, thereby making it possible to treat microstructures with two
fundamentally different length scales.

The theoretical framework of the original two-dimensional formulation of HOTFGM, limited to

thermal boundary-value problems, is briefly described in the first part of Section 2, with the sec-

ond part devoted to the development of the user-friendly formulation. Based on the demonstrated

feasibility of the simplified user-friendly formulation, an efficient reformulation of HOTFGM with

variable thermal conductivity is developed in Section 3 using the local/global conductivity matrix

approach, which is an extension of the local/global stiffness matrix approach described by Pindera

(1991) in the context of purely mechanical boundary-value problems, Analytical solutions used

to validate both the user-friendly and efficient reformulations are developed in Section 4. Volume

discretization sensitivity and validation studies, as well as a practical application of the developed

efficient reformulation, are provided in Section 5. Section 6 summarizes the present accomplish-

ments and discusses future desirable extensions of the developed computational capability.

2 Higher-Order Theory: Thermal Problem

2.1 Outline of the Original Formulation

The original formulation of the two-directional higher-order theory for functionally graded ma-

terials (HOTFGlVl-2D) was outlined by Aboudi et al. (1996). The basic idea was to develop a

two-dimensional framework for the response of composites which are functionally graded in two

directions, accounting for micro-macrostructural coupling effects. As indicated in Figure 4, the

heterogeneous composite model has finite length L and width H in the x2 - x3 plane and extends

to infinity in the x l direction. The thermal loading applied on the boundary can be specified in

terms of temperature or heat flux distribution. The microstructure of the heterogeneous composite

is discretized into Nq and N_ generic cells (q, r) in the intervals 0 _<_x2 _-<H, 0 __<x3 _-<L in the

x2 - x3 plane. The indices q and r represent the location of the generic cell in the x2 - x3 plane and
they can vary from q -- 1, 2... to Nq and r - 1, 2, ... to Nr. Each generic cell is further discretized

into four subcells denoted by the indices (/3_), Figure 4, where the range of each index/3, _ is from

1 to 2. These indices indicate the relative position of a given subcell within the generic cell. The

dimension of the generic cell along the xl direction is infinite whereas the dimensions along the x2

and x3 axes, h_q), h (q) and l_r), l(r), respectively, can vary from cell to cell such that

H

Nq N_

Z(h_ q) + h(q)) , L - Z(l_ ") + 10"))
q--1 r--I
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Figure 4. Schematic of the HOTFGM analysis geometry.

An approximate solution for the temperature field under steady-state thermal loading is con-

structed on the basis of volumetric averaging of the heat conduction equation; together with the
imposition of boundary and continuity conditions in an average sense between the subvolumes used

to characterize the material's microstructure. The solution to the heat equation is accomplished

by approximating the temperature field in each subcell of a generic cell using a quadratic expan-

sion in the local coordinates 2(_), 2(37) centered at subcell's midpoint. The hlgher-order terms in

the temperature field expansion account for the local effects caused by the thermal field gradients,

the microstructure of the composite and the finite dimensions in the functionally graded direc-

tions, in contrast with the linear expansion used in constructing the micromechanics model for

periodic multiphase materials called the Generalized Method of Cells (Paley and Aboudi, 1992).

The higher-order theory is an extension of this micromechanics model to materials without periodic
microstructures, and employs similar volume discretization and related notation.

The unknown coefficients associated with each term in the temperature field expansion are ob-

tained by constructing a system of equations that satisfies the requirements of a standard botmdary-

value problem for the given field variable approximations. That is, the zeroth, first, and second
moments of the heat conduction equation are satisfied in a volumetric sense. The thermal and

heat flux interracial continuity conditions within a given cell, as well as between a given cell and

adjacent cells, are imposed in an average sense together with the applied boundary conditions.

The following two subsections outline the thermal problem formulation and its solution based

on the volume discretization employed in the original higher-order theory in order to prepare the

stage for a generic cell-free, user-friendly formulation outlined in the second part of this section. A

detailed exposition was provided by Aboudi et al. (1999):

2.1.I Thermal analysis

Heat conduction equation Assume that the ftmctionally graded material model is subjected

to steady-state temperature or heat flux distribution on its bounding surfaces in the x2 - x3 plane.

NASA/CR--2002-211910 9



Under steady-state heat conduction, the heat flux field in the material occupying subcell (/37) of

the (q, r)th generic cell, in the region ]_2(_) I < ½h (q), [_(_)[ < _l (r), must satisf 5-

=0 (1)

The components q}ZT) of the heat flux vector in this subcell are obtained from the Fourier's heat

conduction law for anisotropic materials,

q}Z_) = _k}9"_)OT(Z'Y) _ °

0_}. ) , (i,j 2,3, no sum) (2)

where T (zT) is the temperature distribution in the subcen (37) of the (q, r)th generic cen measured

with respect to a reference temperature, and k (zT)J ij are the coefficients of thermal conductivity of

.(/3-y) "(/_'Y)_ " on ;_the material in the subcell (37), with _ij = _i oij (no sum for orthotropic materials. No
_ILJ

sum is implied by the repeated Greek letters in the above and henceforth.

The solution to the heat conduction equation in each subcell of every generic cell is obtained

in conjuction with satisfaction of the continuity and boundary conditions in the manner described
next.

Heat flux continuity conditions The continuity of the heat flux vector q(ZT) at the inter-

faces separating adjacent subcells within the generic cell (q, r) is fulfilled by imposing the integral
conditions

_(;)-_i_) j__(:)/: =-,4")./:@) (3)J-z_")/: - /2

b-h(_)/2 I_i_)=l(f)/: J-h(_)/: '_'(2)=-l(_)/: (4)

In addition to the above surface-averaged continuity conditions within the (q, r)th generic cell, the

heat flux contintfity conditions at the interfaces between adjacent cells are given by

_")/2 _-(])=h(_)/2 Y-L(.;)�2 4,)=_h?+,)/_ (5)

I_i,)=__i.+,)/_ (6)

Thermal continuity conditions The thermal continuity conditions at the interfaces separating

adjacent subcells within the generic cell (q, r) are similar to the corresponding heat flux continuity
conditions,

T(_) I(q,') d2(_')_ T(2_) ,(q,') d5:(_')_(_')-_?) '_(2) (__)/ (7)j__(4-)/2 - /2 _")/2 . =-h. .2

(8)
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Similarly, the thermal continuity conditions at the interfaces between neighboring cells are given
by

T(2n) [(q,,)
Y-_')/2 _ =h_ /2 J-_(j)/2

f_ h(q)/2 T(_2)i(q,r) d2(_) _ f h(q)/2

T(ln) [ (q+l,r)

'#)=-h?+')/: (9)

T(Zl) (q,_+l) . d2(Z )14')=_zi-+,)/2 (10)

Boundary conditions The solution for the temperature field must satisfy the boundary condi-

tions at top and bottom, left and right surfaces of the graded material, i.e., on the external surfaces

of the boundary cells q - 1, Nq; and r - 1, N_. When q - 1 and q - Nq, the temperature in

the cells (1, r) and (Nq, r) at the x2 - 0 and x2 -- H (i.e., left and right) surfaces, respectively,

must equal the applied temperature. As in the case of the interfacial continuity conditions, these
boundary conditions are imposed in an average sense,

T1(_) d_(_)eft (11)

ft_"'/2 (Nq,,) d_(n ) f_"/2 (n) dx(3_) (12)
T(2_/) [=(,)__ Ih(Nq) -- "right

J--/(r)/2 x 2 ---r 5 J --l(r ) /2

where r = 1, ...... , Nr.

Similarly, when r -- 1 and r - Nr, the temperature in the cell (q, 1) and (q, N_) at the xa - 0

and xa - L (top and bottom) surfaces, respectively, must equal the applied temperature,

-
h(q)/2 e(al)=__l[l) j_h(q)/2T(_ ) d2(Z) (13)

h(,,/2 ,_(,,=+½l(_-, j_h(,,/2 Tt(ff; dx (_) (14)

where q = 1, ..... , Nq.

Alternatively, we can also apply mixed-boundary conditions involving temperature and heat
flux on different portions of the boundary.

2.1.2 Solution of the thermal problem

The temperature distribution in the subcell (37) of the (q, r)th generic cell, measured with respect

to a reference temperature Tref, is denoted by T(Z_). The temperature field is approximated by a

second-order expansion in the local coordinates _(2_), 5:(_)as follows (omitting the indices (q, r) for
notational simpUcity) •

T(Z'r)--T(Z_)_(O0)+ 2(;_)T(Z_) + x(3_)T(z') + 1( 32(_)2
_(,o) _(o,)

h(q): _(Z.y) 1 3_(_/): /(r): _(Z_) (15)
4 _(2o) + _( 4 _(o2)

In the two-directional version of HOTFGM, the temperature field varies only in the x2- x3 plane, so

the temperature field expansion terms in the x _ direction are not included. In the above temperature
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field approximation, we can see clearly that there are five unknowns, where T(ZT) is the volume-
=(oo)

averaged temperature within the subcell, and T (_) (m, n - 0, 1 2 with rn + n < 2) are higher-order(m_) , _
terms which are determined from the conditions outlined previously. The reason for the absence of

the product terms x_ ")xj.") (i _ j) is due to the averaging procedure employed in the higher-order
theory.

In summary, in each generic cell there are four subcells and in every subcell the five unknown
coefficients,

T(,0),r(0,),r(:0),r(0:)]("+

describe the temperature field. Therefore, there are altogether 20NqNr unknown quantities which

must be determined for a composite with Nq rows and Nr columns of cells containing arbitrarily
specified materials within their subcells. These unknown coefficients are determined by first sat-

isfying the heat conduction equation, as well as the first and second moment of this equation in

each subcell in a volumetric sense. Then the temperature and heat flux continuity conditions are

applied in an average sense at the interfaces separating adjacent subcells as well as adjacent cells.

Finally, the boundary conditions are imposed in an average sense. Following this procedure, we

obtain 20NqNr equations for the 20NqNr unknown coefficients in the temperature field expansion
as summarized below.

2.1.3 Heat conduction equation

In the course of satisfying the steady-state heat equation in a vohtmetric sense_ the heat flux
quantities given below are defined for convenience

(z_) _ 1
_(m,,O - a(qr)

--_(q)/2

J_ _,(q)/n. J_ 1(')/n.-,.(_)/- -- (_)/-
+ (16)

where m n - 0, 1 or 2 with rn + n < 2, and a(qr) _ h(q)/(r) is the cross-sectional area of the subcell, , _ . -(_)

(/37) in the (q, r)th generic cell. For example, when m - n - 0, r_(Z_)_i(00) is the volume-averaged

value of the heat flux component q_Z_) in the subcell, while for other values of (m, n), higher-order

volume integrals of the heat flux components are obtained. These flux quantities can be evaluated
explicitly in terms of the coefficients T (z_)

(ran) by performing the required volume integration using

Eqs. (2) and (15) in Eq. (16). This yields the following non-vanishing zeroth-order and first-order

heat fluxes expressed in terms of the unknown coefficients in the temperature field expansion.

Q(Zn) z,(zn)_r(Zn)
2(00) - -'_2 =(m) (17)

O(_) k(_/) h(q)2-- _ T(_)
"_2(m) 4 =(20) (18)

Q(_n) - _(_n)w(_n)
3(OO) -'_3 _(o_)

- _ "Y T(_)Q(_n) k(3_) ,(_)2
3(o_) -T_(°2)

(19)

(20)

Satisfaction of the zeroth, first and second moment of the steady-state heat equation, Eq. (1), in

volumetric sense results in the following four relationships among the first-order heat fluxes r)(Z_)
"_(m,,_)
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in the differentsubcells(_7) of the (q, r)th generic cell, where (/37) assumes all permutations of
the integers 1 and 2,

2(_o)/h_ + 3(o_) - 0 (21)

Heat flux continuity equations The equations that ensure heat flux continuity at the subcell

interfaces, as well as between individual cells, associated with the x2 and x3 directions, Eqs. (3)-(6)
are given by

[-19¢3(1`/) /hi-f -¢3(2`/) -dO(2`/) /h2] (q'r) [0 (2`/) ao (2`/) /h2](q-l, r)
_"_2(1,0) _2(0,0) "_2(1,0) -- L_2(0,0) -[- "_¢2(1,0) --- 0

[_m(l_) 1 r)(2_) _ qm(2_) 1 ro(2`/) R¢3(2`/) /h2](q_l,r )_2(0,0) + _2(0,0) _"_2(1,0)/h2] (q'_) + _L_2(o,o) + "_2(1,0) = 0

[-_or)(zl) /ll + r)(Z2) - ar)(Z2) /12] (q,r) rr) (z2) 60 (z2)
_¢3(0,1) _¢3(0,0) "_¢3(0,1) t_¢3(0,0) A- -_3(0,1)//2] (q'r-l) = 0

r)(Zl) lo(_2 ) _ _f)(_2) /12](q,r ) 1 [0(_2) 6(D(Z2 ) /12](q,r_l )[-_3(o,o) + _3(o,o) °_3(o,1) + _-_3(o,o) + -_3(o,1) = 0

(22)

(23)

(24)

(25)

Equations (22)-(25) provide eight relations among the zeroth-order and first-order heat fluxes. It

is observed that Eqs. (22)-(25) together with Eq. (21) can be expressed in terms of T(_:) by using
Eqs. (17)-(20).

Thermal continuity equations The equations that ensure the continuity of temperature at the

interfaces between the subcells, as well as between the neighboring cells in the x2 and x3 directions,

obtained from Eqs. (7)-(8) and Eqs. (9)-(10), are as follows:

IT(l`/) 1 1 _2q.(t`/) (q,r) rT(2`/) 1 1
_(oo) + _ h_T_) ) + _,_ _(2o) ] - _ ..(2_) h_T(2_)L_(oo) -- _'_2"(_o) + _'_;'(2o)](q'_)

[T(2_) 1 T(2,) 1/_2q.(2`/)](q,r) __ IT(l`/) 1 1_2T(,_) (q+,._)
_(00) A- _h2.(lo) A- _,_2_(20) j t"(oo) -_htT[:_) ) + _'_1_(20) ]

[q.(/31) 1 l" 7'(/31 ) 1 12q-(/_1) (q,r) [T(/J2) 1
_(00) _- 2 t_(01) -_ _Vl_(02) ] __ t_(00) _ _/2T(_2) -_- 1127,(32)](q.r )_(0t) _ 2_(o:) J

1, ..(Z2) 112q.(/_2) 1 T(Z_) 112T(3 ,)l(q._+t )[T_ ) + _ _2_ (o_) + _ _Z_(o2) ](q'_) - [T(Z_) l_ +_-(oo) - _ _(o_) _ _ (o_)_

(26)

(27)

(28)

(29)

Equations (26)-(29) provide us with the remaining eight relations governing the temperature field
within interior generic cells.

Goverahag equations The heat conduction equation, Eq. (21), together with the heat flux

and thermal continuity conditions, Eqs. (22)-(25) and (26)-(29), respectively, form 20NqNr linear

algebraic equations which govern the 20NqNr microvariables T(_m_:) in the four subcells (33) of an

interior cell (q, r); q -- 2, ...Nq - 1, r -- 2, ...Nr - 1. For the boundary cells q - 1. Eq. (21) as well

as Eqs. (24)-(29) are still applicable. However, the heat flux continuity conditions between a given

cell and the preceding cell given by Eqs. (22) and (23) are not applicable. The)" are replaced by

the applied temperature or heat flux conditions at the left boundary x2 - 0, i.e., Eq. (11), and

the condition that the heat flux at the interface between subcell (17) and (23 ,) of the cell (1, r) is
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continuous. For the boundary cells q - Nq, the previous equations are applicable except for Eq.

(27), which is replaced by the specific temperature applied at the right boundary x2 - H, i.e., Eq.
(12). Similar situation holds for the boundary cells r- 1 and r- N_.

The governing equations for the interior and boundary cells form a system of 20NqNr algebraic

equations in the unknown coefficients Tl_m_) . The solution of these equations determines the temper-

ature distribution within the functionally graded composite subjected to the boundary conditions

specified by Eqs. (11)-(14). The final form of this system of equations is symbolically represented
below.

kT=t
(30)

where the structural thermal conductivity matrix k contains information on the geometry and

thermal conductivities of the individual subcells (/37) in the NqNr generic cells (q, r). The thermal
coefficient vector T contains the unknown coefficients that describe the temperature fields in each
subcell. It is given by

where

.................. , --N_N_]

-- [T(oo),T(,o),r(o,) r(:o) T(o:)]
• ' _ (qr)

Finally, the thermal force vector t contains information on the boundary conditions.

2.2 User-Friendly Formulation of HOTFGM-2D

The motivation for the development of user-friendly thermal formulation of HOTFGM-2D is to

ultimately construct a basis for an efficient reformulation using the local/global conductivity matrix
approach, which will be outlined in the next section. User-friendly formulation of HOTFGM-

2D basically follows the solution technique of the original formulation which was outlined in the

preceding section. The major difference between these two formulations is simplification of the

equations through the elimination of the generic cell concept which also simplifies the heat flux
continuity conditions.

In the user-friendly formulation, therefore, the microstructure of the heterogeneous composite

is discretized into NzN? subcells in the intervals 0 _< x2 _< H, 0 _< x3 _< L, i.e., the x2 - x3 plane,

Figure 5. The arbitrary subcell (/3_) has length hz, and width l_, where the /3 - 1, 2, ..... , NZ;
_/-- 1, 2, ..... , N_. In the original formulation, there are five unknown quantities associated with each

subcell and four subcells within each generic cell, therefore, 20NqNr unknown coefficients must be

determined by establishing a 20NqNr system of equations involving field equations and continuity

conditions, together with the imposed thermal or heat flux boundary conditions. In the user-friendly

formulation, there are still five unknown quantities in the temperature field expansion associated

with every subcell, because the same temperature expansion is employed. Since the total number

of subcells is N_N_, 5N_N.y equations must be constructed for the determination of the unknown

quantities. Although the number of unknowns in each subcell and the total number of equations

remain the same in the user-friendly formulation (since 2Nq - NZ and 2Nr - N_), the simplified

notation leads to a more systematic method of assembling the final system of equations for the

determination of the unknown coefficients in the temperature field expansion. More importantly,
it also provides a basis for the efficient reformulation described in the next section.
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Figure5. Schematicof the user-friendly HOTFGM formulation geometry.

2.2.1 Thermal analysis

As before, the temperature distribution T(Z7) in the subcell (37) is approximated by

2

T(_) - T(_) _.(_)7_(_'Y) _('Y)T(_') 1 3_(_)2 h_ _T(_) 1 35:(_,)2 l_)T(_)
_(oo) +_2 l(m) +_a _(o_) + _( 4 J_(2o) + _( 4 (o2) (31)

Heat conduction equation As in the original formulation of HOTFGM-2D, under steady-state

heat conduction, the heat flux field in the material occupying subcell (37) in the region I_1 < oc,

I_(_) ] < ½h_, I_(_) ] _< _l_ must satisfy Eq. (1)ina volumetric sense,

The heat flux components q(Z7) and q(Z7) can be expressed in terms of the unknown coefficients

in the temperature field expansion, Eg. (31), using Eq. (2),

02(:_)
= -k(z_)_(_o)(_(z_)+ 3_(_)_(z_) )-(20) (33)

q(/_) = _k(/_'d 0T(/_)

02(3_)

_ T(Z_) --(_)_(Z'_) (34)
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Therefore, substituting Eqs. (33) and (34) into the steady-state heat conduction equation, Eq.
(32), yields,

k (/J_)_. (_) v (_) _(_)
2 _(20) +'_3 _(02)-0 (35)

This is the same equation as Eq.(21) in the original formulation at the subcell level, after replacing

the temperature microvariables with the volume-averaged heat fluxes using Eqs. (18) and (20).

Heat flux continuity conditions between adjacent subcells Using the new generic cell-free

notation, the heat flux continuity condition between adjacent subcell's along the x2 direction is

_/2 J-_/2 =-h_+_/: (36)

Substituting for the heat flux components in the x2 direction using Eq. (33), the above equation
becomes:

-k(_'_')(T(_'_)l_'_(m)+ -_3h_T(_"_)l'y)(2o)- -k(_+"_')(T(_+t'_)l__(m) _ 3h_+,2 T_:°_ '''Y)l_)

Similarly, the heat flux continuity condition along the x3 direction is

(37)

J--h_/2 J--hf_/2

which, upon using Eq. (34), becomes

(38)

31_ T(Z,_) _k(3Z,_+t) T(Z,_+I)_(_'_) h_ + h_) - ( h_-k(_'_) (_ (ol) -_- _ (o2) _(ol) 31.y+t T(_,_+ t
2 -(o2) )hz) (39)

Thermal continuity conditions between adjacent subcells

thermal continuity condition at adjacent subcells interfaces along the x2 direction is,
Using the new notation, the

_/2 T (_') I_=h_/2 dS:(_) - f _/2 T (_+''_) ]_ /2 dx('9
_12 J -t._12 =-h_+t

Upon substituting for the temperature field defined by Eq.
integration, the above condition reduces to

(40)

(31) and performing the required

h 2

T(Z,) l_ + h/_l_ T(Z.r) zl, T(Z._) _ ,-r,(Z+t,_) hz+ _1._
_(oo) 2 (to) + 4 (20) _(oo) 1_- 2 _(_o)T(_+_'_)+

Similarly, in the x3 direction, the thermal continuity condition is,

fhz/2 d2(Z ) ;hf_/2
d --h/3/2 d --hf_/2

2

hz+_l_
T(_+_,_) (41)4 _(2o)

T(_'*+_) [x-_=-_,+t/2 d2(Z) (42)

which, upon using Eq. (31), becomes

2

l_hz ,r(Z_) l'rhz T(Z_)7,(_'_) hz + ,,, +
_(oo) 2 _(o_) ' 4- (o2)

_ T(Z,7+ _)
_(00) hz -

2

1-_+thz T(Z,_+t) 17+_hz
2 _(0_) + 4

_T(3,7+1)

_(02) (43)
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Bomadary conditions The temperature or heat flux at the exterior surfaces of the boundary

subcells (/3, 1) and (/3, N_) at x3 - 0 and x3 -- L, Figure 6. respectively, must equal the applied

boundary condition (given temperature or given heat flux) in an average sense.

(1,7)

subceUs

(B,N_) subcells

/7

(B, 1) L/subcells

=

(Ns,Y)

subceUs

Figure 6. Boundary subcells.

h_ /2
_ T(z,_) _ _(z,_),/2 T(z'_)/2t/4T(5,1

),_._=_z_l/2d'_)(_ _(oo) _(ot) _ + _(o2)
J-he/2

- (44)'" bot

or

h_12 _ (Ol)
f h_ /2 -(Z) dYc(_)

31,T_)/2) - ,_h,/2qbot -- qbot

and

fh,/2 T(_'N')]_'_-=IN-_/:_d2(_) _ ,r,(_,N-_) + ,-r,(_,N-_)lN._/2 + T(_,N._)12 /4 _ fh,/2 T(oZ;d_(_) _ Tt(oZ;
d --h#/2 _(00) "- (01) "(02) J --h_/2

(46)
or

hz /2 --1Nn = _," (01)
T(Z,N,) _ fh,/2 ,,,(Z)dy_(z) _ a(Z)

+ 3/N.r_.(02) /2) J--h5/2 _ttop _ltop
(47)

Similarly the temperature or heat flux in the boundary subcens (1, 7) and (N_, 7) at x2 - 0

and x2 -- H must be equal to the applied boundary condition (given temperature or given heat
flux) in an average sense,

_ /2 T (t''r) [_.==-ht /2 dS:('r)
_/2

_ T(','r)_ T[:_)7)h,/2 + _v(','r)h2/4 _ fg/= _('r)--('r)_ +('r) (48)
-(00) "(20) d_Lr/2 l leftax3 "left

or
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T(1,'9/2 ) _ ,_(V) d_(z'Y) _ z('Y)
3h1_,_(2o) a _/_/2 "1left tlleft

(49)

and

_ /2 T (N_'_/)[_2=hN_/2 d2(_)
_/2

or

_r(N,,_) ,r(N,,_) h2N_/4+ _(10) hN_/2 + _(2o) _ f_._/2 _(_) --(_,) #(v)
J-G�2 l right ax 3 -- _ right

(50)

/2ax3 -- -- +3hNz /2) - (7) --(_) z(7) (51)
J -_/2 _2=hN_ _(m) -(2O) J --_/2 qrightaX3 -- uright

2.2.2 Assembly of the governing equations

As stated before, there are five unknown quantities in the temperature field expansion associated

with an arbitrary subcell (/37). They can be represented by the vector T (/37) defined as follows,

T(Z7) ' [T(oo), T(m), T(o,), T(2o), T(o2)] (zT) (52)

Therefore, we need to construct five equations for every subcell to solve for the unknown coefficients.

Two equations involve temperature continuity in the x2 and x3 directions, another two involve heat

flux continuity in the x2 and x3 directions, and the remaining equation is the steady-state heat

conduction equation. These will be arranged into an organized system of equations along each row

sequence and column sequence of subcells representing the functionally graded material.

Let the assembly of the system of equations proceed first from left to right (in the x2 direction)

along each row of subcells starting from the first row, Figure 7. Subsequently, we proceed from

bottom to top (in the x3 direction) along each column of subcells starting from the first column.

Finally, we take care of the steady-state heat equation within each subcell along either a row

sequence or a column sequence. In summary, we obtain two equations at each interior interface

along either direction after rearrangement, one involving temperature continuity and the other

associated with heat flux continuity. We also obtain one steady-state heat equation for each subcell

along either a row sequence or a column sequence for a total of five equations.

x3

Figure 7. Governing equation assembly.
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Continuity mad botmdary conditions along x2 direction For a given 7, the left boundary
condition, Eq. (48) or (49), can be rewritten in matrix form as follows,

[K_] IT <'_)] - +(_) z(_)-"left or Uleft (53)

where K_ depends -(_) and _e_)t are the surface integralson the applied boundary condition, and T/eft
of the temperature and heat flux on the external surface of the boundary subcell (1, _) given by

the right side of Eqs. (48) and (49). If the applied boundary condition is temperature, then

K_-[1 -hi/2 0 h2/4 0]

Alternatively, if the applied boundary condition is heat flux, then

The definition of T (z_) is given by Eq. (52).

Proceeding into the interior, we can rewrite the temperature and heat flux continuity conditions

at the interface separating two adjacent subcells (/3, 7) and (B + 1, 3) in the interior, Eqs. (37) and
(41), along the x2 direction as follows,

where

_+ _+,,_ T <_) 0
K_ K_,_ T (_+l'_) - [ 0

T+_ [1 hz/2 0 h_/4 0]K_

(54)

K_+l, _- [-1 hz+t/2 0 -h2z+,/4 0]

KZ_ - 0

/_+l,_ 0 - 3/2hz+l

and/_ = 1,2, ..... ,N2- 1.

Finally, the right boundary condition, Eq. (50) and (51), can be rewritten in matrix form as,

right or tlright (55)

where KNz,_ depends on the applied boundary condition, and T(_)t and q_)ht are the surface

integrals of the temperature and heat flux on the external surface of the boundary subcell (N_, _/)
given by the right side of Eqs. (50) and (51). If the boundary condition is temperature, then

KN_,_- [1 hNz/2 0 h2N_/4 O]

Alternatively, if the applied boundary condition is heat flux, then

KN_,_--[0 -- k(N_"Y) 0 - o]
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Therefore,for an arbitrary row 7, let/3 - 1, ..., NZ, Figure 7, and apply the above equations

from the left boundary to the right boundary, respectively. This procedure produces a system of

equations defined by the matrix K (_), which contains information on the left botmdary condition,

temperature and heat flux continuity conditions at the interfaces between adjacent subcells, and

the right boundary condition, respectively, along the row sequence. The structure of K_ ), whose
size is 2Nz × 5Nz, is shown below,

- K_ 0 0 0 0 0 0

............ 0 0 0 0 0

0 0 K T+ K T-
o o o

0 0 K_ K_,_ 0 0 0
KT+ g T-

0 0 0 0 0
0 0 0 KZ+I,__ KZ_,_ 0 0
0 0 0 0 0 .............

0 0 0 0 0 0 K_.,_

Following the same procedure applied to every row, 7 - 1, 2, .... NT, we obtain a system of

equations defined by the matrix A, consisting of the individual matrices K (_), that has the form,

A

B

K_)/ 0 0 0 0

0 ..... 0 0 0

0 0 K (3) 0 0

0 0 0 ...... 0

0 0 0 0 K(._ )._

Since the matrix A consists of N7 matrices K(_3) placed along the main diagonal, its size is 2NzN7 ×
5NzN .

Continuity and boundary conditions along x3 direction

along the x3 direction, the bottom boundary condition, Eq.

rewritten in matrix form as follows,

Repeating the preceding procedure

(44) or (45), for a given/3, can be

[I£_1] [T(zl)] -T(_)_bat or _botZ(/_) (56)

As in the case of the boundary matrix K_ in A, I_l aLso can be obtained in two ways. When
temperature is applied to the boundary, then we get

[10
Alternatively, when the boundary condition involves heat flux, we get

I_,- [0 0 -k(3Z')0 3/2k(3_')1,]

:Fb(;_) and z (;_)ot _bot are the surface integrals of the temperature and heat flux on the external surface of

the boundary subcell (/_, 1) given by the right side of Eqs. (44) and (45).
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Proceedinginto the interior, we can assemble the temperature and heat flux continuity condi-

tions at the interface separating two adjacent subcells (/3, 7) and (3, 7 + 1) in the interior, Eqs. (39)
and (43), along the x3 direction as follows,

where

I_ T÷K3_
^_+l T(3_) _ 0

K3,_+ 1 T(3,_+1) 0

Kz_^T+--[1 0 1._/2 0 ?/4]

(57)

I_ T- -- [-1 0 l_+l/2 0 2z,_+l - -/_+1/4]

KZ_ - 0

I_H--Z,_+I--[00 k (3'_+1) k (3''y+l) ]
-- 0 - 3/2 /_+lj

and 7- 1, .... , N_- 1.

Finally, we rewrite the top boundary condition, Eq. (46) or (47), in matrix form as,

[I(3B,N_] IT (3'N_)] -- T(g) or _top?(3) (58)

where Tt(fp) and z(3)_top are the surface integrals of the temperature and heat flux on the external

surface of the boundary subcell (3, N._) given by the right side of Eqs. (46) and (47). If the applied

boundary condition is temperature defined as T(?), then

2

I<_,N_- [10 lN._/2 0 IN._/4 ]

Similarly, if the boundary is subjected to heat flux given by the form =(3)qtop, then we obtain

[00 - k? o
Following these steps, for an arbitrary cohunn 3, letting 7 - 1 -_ N_, Figure 7, we construct a

system of equations defined by the matrix IK('7) which contains information on the bottom boundary,

interfacial temperature and heat flux continuity conditions, and the top boundary, respectively,
along the column sequence (i.e., in the x3 direction).

. I_f_ .. o .. o .. o .. o ...
• - .. 0 .. 0 .. 0 .. 0 ...

0 ^ T+ I_T--
• .. K3_ .. _+_ .. 0 .. 0 ...

0 ^ H+ "• .. K3_ .. K_+t .. 0 .. 0 ...
" T+ I_T--

• 0 .. 0 .. K&_+_ .. _7+2 .. 0 ...
0 0 I< H+ ^

..... 3,_+1 "- K3,_-+2 -. 0 ...
• 0 .. 0 .. 0 .. 0 .. • ...

. o .. o .. o .. o ..--_,_:_, Q • •
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In the above matrix, the designation, indicates ,3- 1 0 matrices, the designation .. indicates

N/_ - 1 0 matrices, and the designation ... indicates N¢_ -/3 0 matrices, with the zero matrices

having the dimensions [1 × 5]. The size of the I_ (v) matrices is 2N_ × 5N/_N_,.

Extending K ) to all/_, _ - 1, 2, .... , N_, we obtain the matrix B that has the form

S

K[-7) -

o,oo,.

K(j)

_2" U'Y)
l-lb. _r

with B having the dimensions 2N_N. r x 5N_N,.

Heat conduction equation in x2 or x3 direction Finally, we write the steady-state heat
conduction equation, Eq. (35), for an arbitrary (/3_) subcell as follows

-0
J

where

x;<z,+= [0 0 0 - 3kg+ _ 3k_z+]

Assuming that the assembly proceeds from left to right along a row sequence, we obtain the matrix

K; (3) with dimensions NZ x 5Nz for a given 7 row of subcells

B

K_/(*1,-y) 0 0 0 0

0 .... 0 0 0

0 K._ (_''9 0 00

0 0 0 .... 0

0 0 K; (N_'_')0 0

where/3- 1, 2, ..... NZ along the diagonal, respectively.

Extending the procedure to all "7, we obtain the final system of equations that satisfies the heat

conduction equation in every subcell. This system of equation is represented by the matrix C,

which contains the individual matrices K_ (3) along its diagonal as shown below.

C

"Ki -(_)_ 0 0 0 0

0 ..... 0 0 0

0 0 K:,(_) 0 0
0 0 0 ...... 0

0 0 0 0 K *(_)
N.,

where 7 - 1, 2, ...... N_, respectively, along the diagonal. Since the matrix C consists of N_ matrices

g_ (_) placed along the diagonal, its size is NzN_/x 5NzN_/.
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Governing equations The governing equations for the interior and boundary subcells form a

system of 5N_N 7 algebraic equations in the 5N/_N 7 unknown coefficients T (zT)(mn)" This system of
equations can be written symboUcally as

kT -- t (59)

where k is the structural thermal conductivity matrix. It contains information on the geometry

and thermal conductivity of every subcell. The matrix k is made up of three submatrices as follows

IAIB

C
(6o)

T is the thermal coefficient vector. It contains the unknown coefficients that describe the temper-
ature field in all the subcells arranged as follows

T - IT1, ..... , TT, ...... TN._] (61)

where

T.y - IT <1"9, ...... , T(ZT), ...... T(NzT)] (62)

with T (zT) defined previously in Eq. (52). Finally, t is the thermal force vector. It contains

information on the boundary conditions specified either in terms of temperatures or heat fluxes.

In summary, the elimination of generic cells in the user-friendly formulation has resulted in a

system of equations which is easier to visualize and implement in a computer code. Most impor-

tantly, the new formulation based on subcells as the basic building blocks sets the stage for an
efficient reformulation presented in the next section.

3 Reformulation

The user-friendly formulation of HOTFGM-2D, which was presented in the preceding section,

illustrates the feasibility of eliminating the distinction between generic cells and subcells. It should

be noted that the simplified geometric model played an important role in the entire anal3_ical

process. In other words, the basic building block defined by the subcell itself without a generic

cell, which was used to construct the heterogeneous composite, made the indices simpler and the

derivation process more straightforward. More importantly, formulating the higher-order theory

solely in terms of subcells, which play the role of generic subvolumes, reduces it to a standard

thermal boundary-value problem on a discretized domain, thereby facilitating the search for a
more efficient solution method.

As discussed by Pindera (1991), the local/global stiffness matrix method is an efficient algorithm

for solving mixed boundary-value problems in composite mechanics. This method is particularly

well suited to problems involving layered composite materials or structures that require satisfaction

of both continuity of tractions and displacements in mechanical problems, or temperature and

heat flux in thermal problems, along common interfaces. The method thus far has been applied

to layered media composed of continuous layers in Cartesian coordinates, or circular concentric

rings/cylinders in polar coordinates. Examples of the method's application include axisymmetric

and axial shear problems involving multiple concentric cylinders, Pindera et al. (1993) and Williams

and Pindera (1997), composite tube problems, Salzar et al. (1996), a layered composite cylinder

subjected to diametral loading, Davison et al. (1994), and contact problems, Pindera and Lane

(1993) and Vrquhart and Pindera (1994). The local/global stiffness matrix method is based on
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a systematicconstruction of a global stiffness matrix (mechanical problem) or global conductivity
matrix (thermal problem) for the entire composite structure in terms of local stiffness matrices

(mechanical problem) or local conductivity matrices (thermal problem) of individual layers. Herein,

we extend this method to HOTFGM-2D where the volume discr_ization involves subvolumes of

finite dimensions in the x2 - x3 plane defined by the subcells (/3.7). Since we only discuss the

thermal problem here, we will call it henceforth the local/global conductivity matrix method.

In the local/global conductivity matrix method, the local conductivity matrix provides a con-

nection between the surface-averaged heat flux and the corresponding surface-averaged temperature

components at top, bottom, left and right surfaces of a given subcell. The assembly of local conduc-

tivity matrices into the global conductivity matrix is based on the direct enforcement of continuity

conditions along the subcell interfaces, and the interracial temperatures are considered as the basic

unknown variables in the reformulation. Therefore, for a volume discretized into N_N3' subcells,

the total number of interracial surface-averaged temperatures will be (N/_ + 1)N_ + (N_ + 1)N_,

which includes both the interior subcell interfaces and the external surfaces of boundary subcells.

For a given (/3_) subcell, the local conductivity matrix can be expressed as follows,

(63)

It relates the surface-averaged heat flux components -(Q2)(/_), (Q+)(/JT), -(_)3)(Z7), (_)+)(Z_) on

the left, right, top and bottom surfaces of a given subcell to their corresponding surface-averaged

temperatures (7_2-)(/37), (_+)(ZT), (7_3)(Z7), (_)(_7), Figure 8. The superscripts + and- refer to the

corresponding heat flux or temperature acting on the right/top surface and left/bottom surface of

a given subcell. The subscripts 2 and 3 indicate the x2 and x3 directions, respectively. The minus

signs in front of the heat flux components Q2, _)3 indicate that the direction of the heat flux vector

coincides with the direction of the unit normal vector associated with the left and bottom surfaces

of the (/_7) subcell.

x3

z

II

.,.

subcell f

_-- m_

x 2 - Q3,T3

m+

Q2
_+

T_.

Figure 8. Definition of surface-averaged temperatures and heat fluxes.
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Using the Fourier's heat conduction law for orthotropic materials, Eqs. (33)-(34),

the definitions of surface-averaged heat fluxes and temperatures in Eq. (63) are:

17 j _ _, /2 02,(2_)

and

17 j __ /2 02 (_)
I_._,=_h_/:d_(__) (6s)

h_ J-h_/2 02 (_/)
J_(3_,__a_/2d_ (_) (66)

h_ J-h_/2 O_ (_)

d_(__) (_8)

- l_/j_z_/: T (_) 1_.(_)_. h_/2 d_(3_)

h_ j -h_/2 )-_/2

= __ d2(_)
h_ _ -h_ /2

(69)

(70)

(71)

The detailed derivation of the elements of the local conductivity matrix in Eq. (63) will be outlined
in the following section.

Imposition of continuity of heat flux and temperature along common subcell interfaces, together

with the external boundary conditions, gives rise to a system of equations in the tmknown interracial

temperatures along the x2 and x3 directions, respectively. The continuity of interracial heat flux is

ensured by requiring that the sum of the heat fluxes acting on the interface separating (3, 7) and
(/9 + 1, 7) subcells and the interface separating (/3, 7) and (/3, 7 + 1) subcells be zero. i.e..

(0+)(_,_)+ (-0_)(_+',_)
(0+)(_,_)+ (-0[)(_,_+')

= O, (72)

= 0 (7_)

where/3 - 1, 2, .... N;_- 1 and 7 - 1, 2, .... N_- 1. The thermal continuity is directly enforced by
setting the surface-averaged temperatures along interfaces separating adjacent subcells to common
vahles t

(T2)(_'_) = (_)(_'_+_)= f_("_+') (Ts)
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Thesystemof equations is constructed by applying Eqs. (72)-(75) in conjunction with Eq. (63)

to each interface, starting first with the left boundary in the first row of subcells where the boundary

condition is prescribed and then progressing in the x2 direction to each interface separating adjacent

interior subcells, and then finally the right boundary with the prescribed boundary condition. This

procedure is repeated along every row of subcells. We then repeat the same procedure in the x3

direction, starting at the bottom of the first column and proceeding up, and then repeating it

for each subsequent column. At each interface, the thermal continuity expressed in terms of the

common interracial temperatures defined by Eqs. (74) and (75) is directly enforced in the heat

flux continuity conditions given by Eqs. (72) and (73) through the use of Eq. (63). Actuany, the
assembly of the global conductivity matrix for the entire structure is carried out by superposing

local conductivity matrices of individual subcells along x2 and x3 directions, respectively, in the
manner that will be described in Section 3.3.

Since the continuity of interfacial temperatures is enforced directly through Eqs. (74) and
(75) along x2 and x3 directions, respectively, the above procedure results in the elimination of a

substantial number of redundant interracial continuity equations which are retained in the original

formulation. Thus the reformulation simplifies the computational procedure for thermal boundary-

value problems by reducing the size of the global conductivity matrix_ which can be large for a large

number of subcells. Furthermore, the global conductivity matrix can be generated systematically
and automatically, thereby facilitating numerical implementation for any number of subcells.

The above presentation illustrates the general formulation process of the local/global conduc-

tivity matrix method in solving thermal boundary-value problems. In the following, the detailed

derivation of how to construct the local conductivity matrix based on the generic cell-free formula-

tion of HOTFGM-2D problem is outlined. It is should be noted that herein the thermal conductivity

coefficients k2(zT) and k (zT) are assumed to vary with local subcell coordinates. The same problem

but with constant thermal conductivity coefficients was investigated by Bansal (2002).

3.1 Local Conductivity l_trix: Variable Thermal Conductivity

In the present work, the thermal conductivity coefficients k (_7) and k (_7) in each (/_7) subcell are

assumed to vary linearly with the local subcell coordinates _(_) and _(_) as follows

k(Z'J- L'(Z_)'_3o+ k_ "y):_(z) +_33"(Z_')-(_)x3 (77)

We note that _(ZT) and k_ 7)'_23 cannot be completely arbitrary as they do not explicitly appear in

the surface-averaged heat fluxes and the volume-averaged heat conduction equation derived in the

sequel. This is a direct result of the averaging technique employed in the higher-order theory.

Therefore, we must impose the following constraint for consistency: '_23_(_)- k_ _) - 0. In other

words, we obtain one-dimensional variation of k2(_7) and k (_7) along the respective directions, if
linear thermal conductivity variation is assumed.

As before, the temperature field in the subcell (/9.7) is approximated by a second-order expansion

in the local coordinates _(_), _(7) in the following way (see Eq. (31))

T(Z_) _ T(Z_) _(Z)T(Z_) _(3_)T(Z_) 1=(oo) + "_2 -_(m) + + (35:(Z)2=(ol)
h_ _(_)1 32(_) 2
4 _-'(2o) + _ (

2

l_ _r(Z'_)
4 _=(02)
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UsingEqs. (68)-(71),the surface-averagedtemperatures(7_+)(Z_),(7_2)(_)(7_+)(Z_)(7_3)(Z_)are
expressedin termsof the subcelltemperaturemicrovariables_'(Z_)m_ as follows

2

(7_+)(z_) _ T(Z_) d_ hz T(Z_ ) hz T(Z_ )
_(oo)---_ (,o)+-_ (20)

- )(,o)- -5- + --
'24 _(20)

(7_+)(Z,) _ T(Z_) l, T(Z_ ) l_ _.(Z_)
_(oo) + _ (o,) + _(o:)

(T3)(_) - T(_) l_ T(_) l_ T(_)
_(oo) _ _(o,) + _ _(o2)

Adding and subtracting the above first two equations involving (7_+)(zz) and (T2-)(_), we obtain

expressions for T_0_) and _(/_) in terms of (T+)(/_) (T2-)(/_) and T(_) The matrix form of these
two expressions become _(20) ' _(00) •

1 1

- 2h_ h2_ IT2 4T(m) (_) (_) 1 j _r(_/) (78)_(oo)

• . (Z_) (Z_)
Stmllarly, T(Ol) and T(02) can be expressed in terms of (T3)(z_) (T3+)(Z_) and T(Z_)' _-(oo) by applying
the same technique to the above last two equations,

1 1

[ T(Ol)T(o2)] (Z_') - 21_' --z_ [ T3 ] (z_) 4[0] (¢_'v)7_+ 12 1 T (79)_ _ (oo)

l_ 12

The next step is to evaluate the surface-averaged heat flux components in terms of the mi-

crovariables T(/_)(mn)"Integrating Eqs. (64)-(67)with k (z_) and k (z_) given by Eqs. (76) and (77),

the surface-averaged heat fluxes (Q+)(_), (_)2)(/_), (Q+)(/_), (Q3)(/_) are obtained in terms of the
temperature microvariables T (/_)

(mn) as follows

_(2o) 2

"(10) (-- -_- "22 ) -[- ( b(/3"Y)"(:o) -_'_:o

(Q+)(z_) _ T(z_) _(z_) l_ _(z_) T(z_) -31_
"_(01) (--'_30 -- 2-'_33 ) -_- ( b(/_/)_(o_)---_'_ao

(Q3)(_) _ 9-(_) _(_) l_ _(_) T(_) 31_ _(_)
_(o,) (-,_o + _'°_ ) + _(o_) (-_'_o

)

312_4 "_33 )

4 "_33 )

The above four equations can be rewritten in matrix form as follows

ha 3h_k2o_:o - ]_:: ; ----5--

h_ 3h_k2o
-

+ _k::

3__ _22
T(,o)T(:o)] (so)
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and

l_/ 312k3o 312 (/J"/)

-- 17 31_k3o k33 T(°2) (81)Q3 -k_-k=_ 2 4

Substituting for T(Z,) T(Z,) and _(Z') T(Z,) using Eqs. (78) and (79), the above equations become-_(lo), -_(2o) -'-(o_), -_(o2)

@20 2k2o (/_') 6k2o 3k22 (/37)

2h_2° k2.'2 hz I'2" (z') hz ,-r,(Z,)
- 4k2o f'+ + 6k2o -'-(oo)

-k22 h_ -2k22 h_ h_ + 3k22

and
(82)

4k3o k33 4k3o (Z_) 6k3o (Z_)

- 4k3o f'3+ + 6k3o4k3o -2k_

3k33

3k33

(_)
oo)

(83)

The last step is to develop a relationship between the surface-averaged temperatures and the

volume-averaged temperature T(_,) This relationship is obtained from the volume-averaged heat_(oo) •
conduction equation

/2 a_hz/2 022(z) Oq(/_') ) ,_(¢_)._(,)t O_ ax2 axa --0
(84)

where q(_7) and q(¢_') are given by Eqs. (33) and (34). Since the thermal conductivity coefficients

k (/_') and k (z') are functions of the coordinates Y_(Z) and 5:('), the above equation can be developed
by using the chain rule as

_/2 hz/2
Ok(2_'_) OT (Z'_)I

-_12 -hj/2
+ 0._2(_ ) + 02(, ) 02(, ) + 0223(, ) )ax 2 ax 3 --0 (85)

Upon determining the derivatives of temperature and thermal conductivity, respectixely, the above
equation becomes

_/2 hz/2

/ rt.(Z')T(Z_) "v-r'(Z') -(Z'r)-(Z) t..(_",')_'°:_:_-'-(_.o)+ "-'-'(_o)(2"::= x_ + 'o:_oi +
-_/2 -h_/2

33 -'(o_) + '-'_-(o2)_--"_33 + ,_ (86)

Substituting for T(m ) (Z'), T(2o)(Z'), and T(ot)(Z'), T(o2)(/3,) using Eqs. (78) and (79). the above
equation becomes
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k(_) _(_)

22h3 [(T2+)(_'Y) - (7_2-)(_7)] + "_2Oh_ [2(7_2-)(;_7) + 2(2_2+)(;_7) - _(oo) ]+aT(_7)

(_'_) 3k_w)

1.y :'_ (oo) ] - 0 (87)

Therefore, the expression for T(ZT)_(00) can be obtained from the above equation in terms of (T2-)(_7)

(_7)
oo)

_ az.(Z'Y) k_') z_(Z'_) az.(Z'r)

- [(T_)(_,)(_'°2_@ _h_ ) + (_+ )(_')('_=h_+ _,o2o@)+

6k_) z_(_7) L,(;_) 6z_(_) z_(;_7)
- '_3__h3)+ (_3+)(Z_)('_33 + '__)]/12(,y20

(T_)(_'_)( l_ 1._ l._ l_ h_

z.(_)
+'"30

l_ ) (88)

Upon substituting the above expression for T (z_) into the expressions for (Q+)(Z_) ((_-)(_)_(oo) , ,
(Q+)(_7) (Q3)(_7) given by Eqs. (82) and (83), the local conductivity matrix _(_7) is obtained

which directly relates the surface-averaged heat fluxes to the corresponding surface-averaged tem-
peratures. These expressions can be written in matrix form as follows

(89)

with the individual local conductivity matrix elements given below in terms of the subcell thermal

(_) _ (_) / 12) for convenience.conductivity coefficients and geometry, upon setting A - 12(,_20 /h2_ + '_3o
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(_) t_(_) 2v(_) a_(_) t_(_) 6k (30Z_)_'_30 _(_) -'_33_ )( ,
'_41 --'_33 l_ l_ l_ 12

u (_) a_ (_) t. (_) au (_)
'_30 v'_30 2Z_(BV) '_33 "'_30

'_42 l_ l_ l_ 12

_('_) 6k_o_/)

a_(Z_) k_ _) a_(Z_)"'_20

3.2 Constant Thermal Conductivity

When the coefficients associated with the local coordinates :_(_) and :_(_') in the expressions for k(C_)z

and k3(z_) are set to zero, i.e., let '_22b(/_7)-- '_23/_(/_7)_ '_32_(Z_) -- '_33v(_)-- 0 in Eqs. (76) and (77), constant
(Z_) (Z_) (Z_) (Z_)

thermal conductivities are obtained, i.e., k2 = k20 and k 3 = k30 .
Re lac" k (_) with k (_'_)k (_) With k (_)a ...... (_) "(_) ...........

p ,_mg 20 2 , 3o 3 na lelstln_/g22 = _33 = u m _ne mcat conauc_v_y
matrix _tv7_ with variable thermal conductivity in Eq. (89), the new local conductivity matrix with
constant thermal conductivities is obtained.

(90)

where

a(_) _(_) _(_) (_) k(_)k(_)hz
13 -- '_14 -- '_23 -- _24 =

,(")_ ,_')_ _.(/_'9_ ,_,)k(2")kT")l'_
31 '"41 " "--

33 ., l_ (2 - 2_'%))--_-
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n(_) _(_) -2k(3_)
- _43 - (1

17

and where

k(_) k(3_)

- h--T + )/a
ki ,)

This is the same local conductivity matrix as that obtained by Bansal (2002), which confirms
that the presem developmem reduces correctly.

3.3 Global Conductivity Matrix Assembly

As mentioned above, the assembly of the global conductivity matrix is carried out by applying

heat flux continuity conditions, Eq. (72) and (73), at each interface along x2 and x3 directions,

respectively, together with the temperature continuity condition defined by Eqs. (74) and (75),
starting at the boundary with prescribed boundary conditions.

3.3.1 Temperature continuity conditions

From the temperature continuity, we know that the surface-averaged temperature (iP+)(zT) of the

(/3, 7) subcell is the same as (T2-)(/_+t,7) ofthe (/3+ 1, 7) subcell defined in Eq. (74). The same holds

true in the x3 direction, Eq. (75). These conditions are applied/3 - 1, ..., N_- 1 and 7 - 1, ..., N_- 1

times at the subcell interfaces in the x2 and x3 directions, respectively, in the heat flux continuity

conditions described below. Thus, altogether, the number of unknown surface-averaged interracial

temperatures in the interior is (N_ - 1)N 7 + (N_ - 1)N_.

3.3.2 Heat flux continuity conditions

The continuity of interfacial surfaced-averaged heat flux along each interface requires that the sum

of the heat fluxes across the interfaces separating adjacent subcells be zero, i.e., Eq. (72) in the x2
direction and Eq. (73) in the x3 direction, respectively. Expressing these two equations in terms

of the surface-averaged temperatures by using Eq. (63) yields for the interface between (/3, 7) and
(/3 + 1, 7) subcells,

21 + "_22 '_23 _24 (T+) + "_11 (_ir'2") ('+1'7)

+_ (_+ 1,_)(_2+ )(_+ 1,_) (_+ l,_) _ (_+ _,_) -+ + = o (91)

while for the interface between (/_, 7) and (/3, 7 + 1) subcells we get,

41 + "_42 + "_43 + "_44 + '"31 (_/='2--)

_(_,_+_)(_-)(_,_+_) n_,_+ _) (_,_+_) (92)

Employing the temperature continuity conditions, Eqs. (74) and (75), the above equations become

21 + _n22 + 11 + +' _12 ' '_23

_24 _ 3 + 13 + =

(93)
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(94)

Thus, these two equations provide us with (N_ - 1)N_ + (N_- 1)N_ equations for the unknown

(N_ - 1)Nv + (N_ - 1)Nil common interracial surface-averaged temperatures.

3.3.3 Botmdary conditions

At external boundaries, the remaining 2(Nil + N_) equations are obtained from the imposed bound-

dry conditions specified either in terms of applied temperature or heat flux as given below

or

and

or

T3(z'l) ]e_=-l_/2 = 1 fh4/2 (95)

0(3z'') = (96)

1 fhz/2 (Z)--(Z)
(_(Z,N.y) l_3=lN,/2 = h-fl J-h_/2 qi°pax2 (98)

at (fl, 1) and (fl, N_) subcells. Similar reasoning holds for subcells (1, _), and (Nil, 31) where the
applied boundary conditions are given by

or

and

or

T2(_'r) le_=-ht/_ =

G =

T2(yz'_) ]e_=n_/_ =

Q(N_,_) ]e_=_/_ =

(99)

1 ft_/2 (v) --(v)
1-_d -l_/2 qleftax3 (100)

1 f_/2 _(_) --(_)
l-_ j__/2 2 rightaX3

1 f_/2 .(_) d_ (_)
l_ j __ /2 Uright 3

(101)

(102)

3.3.4 Governing equations

The general form of the final system of equations can be written symbolically as

Q- &T

which can be decomposed for convenience as follows

(103)

^

/_12 rr3 ] (104)
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wherethe heatflux vectors(_2and (_3aredefinedas

Q_-Iq(:'_,--.,q:(_,...,q_(_l
(105)

where

The vectors T2 and T3 contain the unknown surface-averaged temperatures at the subcell

interfaces and the outer edges of the composite and are given by

_::- c_(=,),...,_:(;),...,_(J,)j
(106)

where

_'_)- I_ ''_),...,__+"_)1

The global thermal conductivity matrix k is obtained by assembling the local conductivity
matrices as explained above. It contains information on the geometry and thermal conductivities

of the individual NzN._ subcells. The general structure of the global conductivity submatrices
/_11,/_12, _21, &22 is given below

" A_ z) 0 0 0 0

0 ..... 0 0 0

0 0 A(__) 0 0

0 0 0 ..... 0

0 0 0 0 A (N'r)

(N_,,)
B (''') B_ 2'1) ..... Be

(N_,2)B (1'2) B (2'2) ..... BZ

B(Z,N-r) B (2,N-_) B(Nz,N._)_ .....

- B(z,') B(z,2) .....

B_ 2,t) B_2, 2) .....

. _ _, .....

B(Z,Y_)

B_2,N-)

B (N_,N-_)

A(- ') o o o o
-y

0 ..... 0 0 0

0 0 A (e) 0 0
/

0 0 0 ..... 0

o o A(f _)0 0
_y

(_)A(_z) (z;_)_.d B(_z'_)The elements ofthe submatricesA_ , ,B 3 , are given below

a(t,-r) _.(z,-r) 0 0 0 0 0 011 '_'12

............ 0 0 0 0 0

0 0 _.(_,'r) _.(_,'r)'_tt "12 0 0 0 0
0 0 _.(_,'r) ,.(_,'r) (_+_,?) ,¢(_+t,?)"_2t "_22 + s:zz '_z2 0 0 0
0 0 0 ....................

. o o o o o o
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where7- 1,2,.....N_.

n(Z,l)
33

0

0

0

0

where/3- 1, 2, ...N 3.

_,1)

0

o
0

0

0

n(Z,_)
33

n(Z,_)
43

0

0

0 0 0 0 0

0 0 0 0 0

n_"Y) 0 0 0 0
n(_,_) (_,_+1) _ (_,_+1)

44 + n33 '_34 0 0 0

.... o ...............

(Z,N_) .. (/3,N_)0 0 0 n43 '_44

1

2

hrow

(/3 + 1 )throw

N_+I

1 2 .... -ythcol. (_/+ 1)thco 1..... N_+I

0 0 .... 0 0 .... 0

0 0 .... 0 0 .... 0

................ . ...........

0 0 _(_'_) _(_'_)...... 13 '_14 .... 0

0 0 _3 '_) _(_'_)...... 24 .... 0

0 0 .... 0 0 .... 0

1

2

ythrow

('7 + 1)throw

N_+I

1 2 .... /Thcol. (13 + 1)thcol ..... N3+1

0 0 .... 0 0 .... 0

0 0 .... 0 0 .... 0

0 0 ... _(_'_) _'_)• '_31 .... 0

0 0 _(_'_) (_'_)...... 41 _42 .... 0

................... 0 ........

0 0 .... 0 0 .... 0

3.4 Reformulated vs Unreformulated HOTFGM

The motivation for the above outlined reformulation of HOTFGM is the reduction in the number of

simultaneous equations whose solution determines the temperature field in the individual subcells.

The reduction is a direct result of enforcing the thermal continuity at the common subcell interfaces

directly. This is possible because the fundamental unknowns in the reformulation are the surface-

averaged interracial temperatures. In the original formulation, the size of the global conductivity

matrix is 5N/3N-r × 5NzN-r, while in the reformulation version we have (2NzN-r + N/3 + N.r) ×
(2NzN-r + N;_ + N.r). Figure 9 compares the size of the global thermal conductivity matrices in

the two versions. For discretized volumes with the same number of subcells in the two directions,
N/3 -- N-r, the reduction can be as much as about 60%.
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Figure 9. Reduction in the size of the global conductivity matrix due to reformulation.
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4 Analytical Solution

In this section, an analytical solution methodology is developed for determining temperature distri-

butions in homogeneous and layered plates subjected to steady-state thermal loading. The solutions

will be employed in validating both the user-friendly and reformulated versions of the higher-order

theory. First, we develop a solution for a single strip or plate subjected to thermal boundary

conditions, and then generalize it to layered plates consisting of an arbitrary number of strips.

4.1 Single Plate/Strip Case

Consider the problem of determining the temperature distribution in a rectangular plate whose

length is a and height is b in the x2- x3 plane, Figure 10, subjected to steady-state thermal

boundary conditions to be specified later. The thermal conductivity of the plate's material is

constant. Therefore, the governing equation for the temperature distribution within the plate in
this problem is the Laplace equation

V2r -- 0 (107)

We solve this equation by the separation-of-variables method, seeking a solution of the form

T(x2,xa) - x(x2)y(xa) (108)

"x

T(x2, b)

V2T=0

P
T(x2, 0)

Figure 10. Problem definition.

>x 2

Substituting Eq. (108) into Eq. (107) and separating the variables gives

so that

and

XII yll

_ _ k2
X Y

X" - k2X - 0

Y" + k2y - 0

A + Bx2,

X (x2) - { C cosh kx2 + D sinh kx2,

(109)

(110)

(111)

(112)
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E + Fx3, k - 0 (113)
Y(x3) - { G cos kx3 + H sin kX3, k # 0

Because the Laplace equation _72T - 0 is linear, we can use superposition and combine the k - 0
and k # 0 product solutions as follows

T(x2, x3) - (A + Bxz)(E + Fx3) + (Ccoshkx2 + Dsinhkxz)(Gcoskx3 + Hsinkx3) (114)

The coefficients A, ..... , H depend on the particular boundary conditions applied at the plate's edges.
We consider two cases below"

Cas (i)

The first case produces an internal temperature field that has no axes of symmetry when a _ b,

and when a - b the temperature field is symmetric about the diagonal connecting the upper left
and the lower right corners. The corresponding boundary conditions are

T(0, x3) - 100, T(a, x3) - 200

T(x2,0) - 200, T(x2, b) - 100

Application of the boundary conditions at the bottom face x3 - 0, where T - 200, yields

(A + Bx2)E + (Ccoshkx2 + Dsinhkx2)G - 200

from which we obtain

AE = 200, B = 0, G = 0

Therefore Eq. (114) becomes

T(x2, x3) - 200 + Jx3 + (C' cosh kx2 + D' sinh kx2) sin kx3 (115)

where AF has been combined into J, CH into C', and DH into D' for convenience.

Next, application of the boundary condition at the top face x3 - b, where T- 100, yields

D'200 + Jb + (C' cosh kx2 + sinh kx2 ) sin kb 1O0

from which we obtain

Hence,

Therefore, Eq. (115) becomes

J = -100/b, and sin kb = 0

k=m_r/b (re=l,2, ..... )

T(x2, x3) - 200 100x3 _ mTrx2 mTrx2 m,Tx3
b 4-E (Cm cosh + Dm sinh ) sin (116)

n=l b b b

Application of the boundary condition at the left face x2 - 0, where T - 100. yields

oo11"_i"_

200 ,uux3 mTrx3
b _ E Cmsin b = 100 (117)

m--I

Solving for the unknown coefficients Cm using the orthogonaUty properties of sin rn,Tx3
b

------. we obtain

2 if0 b 100x3 100)sin mTrX3dx3 (118)( b --g-
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or

200
Cm -- (119)

mr

Finally, application of the boundary condition at the right face x2 - a, where T - 200, yields

200 - 100x3b + (_ 200 cosh mTra mzra mTrx3
m=l mrr b + Dm sinh b )sin b

from which the solution for Dm can be obtained in the form

= 200 (120)

D_- 2 [b 100x3 . mTrx3 200- mTra ( sin +

b sinh( b ) Jo b b mTr
cosh bmTrasin2 mTrx3b )dx3 (121)

m Tfa

200[cosh( b ) - cos mTr]

or

mTr sinh( mTrab)
(122)

Thus, the solution to Eq. (107) is given by Eq. (116), with the coefficients Cm and Dm computed
using Eqs. (119)and (122).

Case (ii)

If the boundary conditions are changed to produce temperature distribution which is symmetric
about the x3 - b/2 line, i.e.,

T(0, x3) - 100, T(a, x3)- 200

T(x2, 0) - 100, T(x2, b) - 100

then we obtain a simpler form of solution. First, applying the boundary condition T(x2, 0) - 100,
we get

, D'T(x2 x3) - 100 + Jx3 + (C' cosh kx2 + sinh kx2) sin kx3 (123)

where AE - 100, B - 0, G - 0, and CH has been combined into C', DH into D', and AF into J.

Next, application of the boundary condition T(x2, b) - 100 in the above equation produces

T(x2, b) - 100 + Jx3 + (C' cosh kx2 + D' sinh kx2) sin kb - 100 (124)

from which we obtain

J-0, sinkb-0

Therefore, the solution becomes

OO

T(x2, x3) - 100 + E(Cm cosh mTrx2 mTrx2 mTrx3
n=l b + Dm sinh b )sin _ (125)

After application of the boundary conditions T(0, x3) - 100 and T(a, x3) - 200, the unknown

coefficients Cm, Dm are obtained, by using orthogonality properties of sin mzry in the form
b

Cm -- 0 (126)

D_ 2 _oob mTrx3 400
= sinh -mTrab 100 sin b dx3 -- mTr sinh mTr.__._a (m - 1, 3, 5, ...) (127)

b

Thus, the solution in this case is given by Eqs. (125), (126), and (127).
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4.2 Nz-stri p Case

In the Nz-strip problem, the rectangular plate, which has length a and height b, is divided into NZ

strips along the x2 direction. Therefore, every strip has height b and width an, where/3 - 1, ..... , N_,
Figure 11. Since the boundary conditions on the top and bottom surface are given in terms of

constant temperature, the analytical solution can be developed first from Eqs. (116) or (125) of
the previous section depending on the applied boundary conditions.

X3

--C

r

! i I
,_ X3

/1,,
I

, |

I
I

I

I

(a_'2,b/2:
7

> x2¢)

t ahstrip

®
X2

Figure 11. N z-strip case problem definition.

Case (i)

Assume the boundary conditions on the top and bottom faces are Ttop - 200 and Tbot -- 100.

Then the temperature field in the arbitrary 3th strip is given by Eq. (116) as follows,

T(Z)(x(Z)x3)_200, 100X3b + Z (C_) cosh mTrx(2Z) + D_) sinh mTrx(Z) ) sin mTrx3
m=l b b b

However, it should be noted that this solution is obtained in the coordinate system with the

origin located at the left-bottom corner. In order to obtain the solution in the coordinate system

with the origin in the plate's center, we use the following coordinate transformation, Figure 11.

2(2z) -- x(2z) - az/2 _ x2(z) -- 22(_) + az/2

23 - x3- b/2 =_ x3 - 23 + b/2

Therefore, the solution of the Laplace's equation in the translated coordinate system becomes

CX)

T(_)(_(_),23) _ Z.[C_)cosh m_(_2(_)+ a_/2) + D_)sinh m_(x(_)+ a_/2)] x

Case (ii)

m--1

sin mTr(Yc3 + b/2)

b b

b + 200 -- 100(5:3+ b/2)b ( 28)

If the boundary conditions are changed to produce temperature distribution which is symmetric
about the x3 -- b/2 line, i.e.,

Ttop -- Tbottom -- 100
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the temperaturefield in the arbitrary/3th strip is givenby Eq. (125) as follows

, oo mTrx(Z )') - 100+ Z (c )co h
m----1 b

+ D_)sinh mTrx(Z) mrrx3
b ) sin b

Upon transforming the above solution from the coordinate system with the origin located at the

left-bottom corner to that with the origin in the plate's center, the solution of the Laplace's equation
with the symmetry boundary condition becomes,

co

T (z) (2 (z), 23) - 100 + E [C_) cosh m_(2(Z) + as//2) D_) mTr(2(Z) + as//2)
m----I " b + sinh b ]x

sin mTr(_3 + 5/2)
b

In both cases, the solution for the unknown coefficients C_ ), D_ ) is obtained by constructing

a system of equations which satisfies the heat flux and temperature continuity conditions at the

interfaces separating the individual layers and the remaining boundary conditions. In order to

make this as efficient as possible for large number of layers, we formulate the solution procedure
using the local/global conductivity matrix approach.

In the local/global conductivity matrix approach, the unknown coefficients C(mz) and D_ ) are

the key elements in constructing the local conductivity matrix. They are expressed and calculated

in terms of the harmonics of common interracial temperatures between adjacent strips and subse-

quently related to the corresponding interracial heat flux harmonics through the local conductivity
matrix. The detailed derivation is outlined in the following section.

4.2.1 Construction of the local conductivity matrix

In order to construct the local conductivity matrix, we start with the heat flux constitutive equation
in the z2 direction

q(2_) -k_ 0;_) , 3 -1, ..... , N_ (130)

Substituting the expression for the temperature field given by Eq. (128) or (129). the above equation
becomes

]q(Z) -- -ks Z mTr )sinh m_'(2(Z) + as//2) + D_)cosh mTr(2(Z) + a2//2) sin m_(23 + b//2)
_=l _ b b b

(131)

The determination of the coefficients C_ ) and D_ ) for case (i) and case (ii) is outlined below.

(i)
In order to express the coefficients C_ ) and D(mz) in terms of the surface temperatures on

the vertical boundaries of the _th strip, Eq. (128) is evaluated at (az/2,23) and (-a_/2,_3),
respectively, yielding

T (z) (az/2, 23) -- 200 -
100(23 + b/2)

co

+ E [C_)cosh mTraz D_) mTra2] ram(23 + b/2)
m=l b + sinh b _sin - b

(132)
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or

[T(Z)(az/2, _3) - 200+ 100(23b + b/2)]_ _ Z [C_)cosh m_azb + D_) sinh m_aZ]sin
m----1 b

and

or

T(Z) (-az/2, _3) - 200 -

,._(_3 + b/2)

[T(Z)(-az/2, _3) - 200 +

b

(133)

100(23 + b/2) + Z C(mZ)sin mrr(23 + b/2) (134)
b b

m_l

oo

100(23b + b/2)]m - Z C_) sin mrr(23b + b/2) (135)
m--I

The corresponding interracial temperature harmonics at the left (-a_/2, 23) and right (az/2, 23)

boundary for an arbitrary/3th strip can be obtained from Eqs. 133) and (135), res_ctively, using
orthogonaUty relations

and

b/2

/ [ ) 100(23+b/2)]b mTr(23+b/2)d23b
(T+)(m_) = T(_)(az/2,23 - 200 + sin

-b/2

b/2 cx_

-- Jf Z[C_ ) cosh mTra_ D_) mTraz m_(23 + b/2)
-5/2 m=l .....b + sinh b ]sin2 b d:_3

(T_)(2)
b/2

/ [T(_)(-a_/2,5c3)- 200 +

-b/2

100(:_3 + b/2)] sin
b ]

b/2
oG

-- f Z C(m_)sin2 mTr(:23b+ b/2)dx,3

--b/2 m=l

m_(23 + b/2)d23
b

Performing the required integrations, the above two equations become

(T+)_) = b(c_)cosh mTraz
2 b

(T2"-)(_) - _C_)

+ D_) sinh mrraZb )

Upon writing the above two equations in matrix form. we obtain

- b 2 0 Cm

T+ _ cosh mrraz b sinh mTraz Din.
b 2 b

(_)

(136)

(137)

(138)

Inverting the above system, the coefficients C_ ) and D_ ) are expressed in terms of the interracial
temperature harmonics as follows
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[cm b ,[ ]Dm - b -2 0 T2 (_)
_ cosh mTra_ b sinh mTra_ T+ (139)b 2 b m

Similarly, evaluating the heat flux at the left (-az/2, 5:3) and right (az/2, 23) boundary for the/3th
strip, respectively, yields

O¢

mTr C_ ) sinh mTraz D_ ) mzrazq(Z) (az/2, 5:3) -- -kZ Z (-b-- b -4- cosh )sin
m=l b

m=l --_ b

m_(_3+ b/2)

The interracial heat flux harmonics for an arbitrary /3th strip are obtained from the above two
equations by using orthogonaUty relations,

b/2

(o_+)_) - f q_(')(az/2 23)sin mTr(23+ b/2)' b dZ3 (140)

b/2

-k_ Z (-_ C_) sinh mrca3 D_) mrcaz mTr(23 + b/2)
m=l --'7 + cosh b ) Sin2 b dx3

b/2

--b/2

az/2, 23)sin mTr(23 + b/2)d23
b

b/2
(X)

-- / -k_ Z mTr D_)sin 2 mTr(:c3 + b/2)dx3
--b/2 m--1 -g- b

(141)

The above two equations can be expressed in matrix form as follows

Case (ii)

-- mrck_ mTraZ mTrk_ 2 Cm
2 sinh b - 2 cosh mTraz Dmb

(_)

(142)

Similar to case (i), evaluating the surface temperatures on the vertical boundaries of the/3th
strip i.e., Eq. (129) at (a_/2,_3) and (-a_/2,_3), respectively, yields

or

¢X)

T (_) (a_/2, 23) - 100 + Z [C_) cosh mTra
m=l b

+ D_ ) sinh mTra_ mTr(23 + b/2)
b ]sin b (143)

IT (z) (az/2, 23) - 100]m -- E [C_) cosh mTraz
m=l b

+ D_ ) sinh mTrazl mTr(:_3 + b/2)
b _sin b (144)

NASA/CR--2002-211910 42



and

T (z) (-a/_/2, 23) - 100 + E C(mZ)sin m_(23 + b/2)
m=l b (145)

or

cx_

[T(/_)(-az/2,23) - 100]m -- Z C_)sin row(23 + b/2) (146)
m----1 b

The corresponding interfacial temperature harmonics at the left (-a/_/2' x3) and right (a/3/2, x3)

boundary for an arbitrary/_th strip can be obtained from Eqs. (144) and (146), respectively, using
orthogonality relations

(T:+)_)-
b/2

J" _1ool
--b/2

rnTr(x3 q- b/2) dx3
b

b/2
(x)

- f _[C_)c°sh__b
-b/2 m=l

+ D_ ) sinh m:raz]b_sin2 m_'(23b + b/2) d23

and

(T;-)_) =
b/2

/ IT (_) (-a_/2, x3)- 100] sin mTr(x3 + b/2)dx3b
-b/2

b/2
oo

-- f Z C(mZ)sin2 mTr(23 + b/2)b d23
--b/2 m=l

Upon performing the above integrations, these two equations simplify to

b C_ ) m:raz(T +)_) - _( cosh b

b c_)

+ D_ ) sinh mrraZb )

Writing the above two equations in matrix form, we obtain

- b _ o c_
T+ _ cosh m:ra_ b sinh mTra_ Dm

b 2 b

(Z)

(147)

(148)

(149)

which has the same form as Eq. (138) obtained for case (i) with the first kind of boundary

conditions. Further, since the expression for the heat flux, Eq. (131), for both boundary conditions

does not change, the relationship between the coefficients C_ ) and D_ ) and the interracial heat

flux harmonics, i.e., Eq. (142), is also the same. However, the specific values of the coefficients C(mz),

D_ ) and the corresponding interfacial temperatures (T2-)(mz), (T+)_), heat fluxes (Q2)_) , (Q+)_)

are not the same due to the different expressions for the solution of Laplace's equation with different
kinds of boundary conditions.
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Nevertheless,in both cases,upon substituting the expression for the coefficients C_ ) and D_ )

given by Eq. (139) into Eq. (142), carrying out the matrix multiplication and simplifying, we obtain

the same relationship between the interracial heat flux and interracial temperature harmonics, i.e..
the local conductivity matrix,

where
m_az

m_kz cosh b(_11)_) =
b sinh m_az

b
m7T_ B, ,,,o(_2_)'_:-

b sinh mxa_
b

(_21)_) m_k_ sinh m_az
= t

b b

mTrkz cosh m_az
b

b sinh mwaz
b

kzm_ cosh 2 m_az
b

b sinh mwaz
b

4.2.2 Global conductivity matrix assembly

Imposition of the continuity of interracial heat flux and interfacial temperature along common

interfaces between adjacent strips, together with the external boundary conditions, gives rise to a

system of equations in the unknown interracial temperature harmonics. The continuity of interracial

heat flux is obtained by requiring the sum of the heat flux acting on the interface separating/_ and
B + 1 strip to be zero,

(Q+)_) + (Q2)_ +') = 0 /_ -- 1, ...... N_ - 1 (151)

whereas the continuity of interfacial temperature is given by

(T+)_) -(T2-)_ +l) = T2z 3- 1, .... N_- 1 (152)

The system equations is constructed by using Eq. (151) at each interface along the x2 direc-

tion, starting with the left boundary where the boundary condition is prescribed, together with

application of the temperature continuity condition defined by Eq. (152), and proceeding to the

right boundary. Following this procedure, we obtain the following system of equations for the rnth
harmonic of the interfacial temperatures

left boundary:

1st interface:

/3t h interface:

Tle f t 1 1 [-)left

_1 q_le ft 2 2_,__ + (_'_ + ,_,, )r_ + ,_,_T2- o

/3 + lth interface:

+ - oN z - lth interface: g2l __ ( N_ _- g22 NZT; ight

right boundary: t¢2_ + _22
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whereNZ is the number of strips, and the harmonic number m has been suppressed. The above
equations can be expressed in matrix form for the ruth harmonic as follows

• o o . o o
_ _2+_1 • 0 0 . 0 o
0 0 . 0 0 . 0 0

o o • d;'+,4, • o o
o o • 4, + • o o
0 0 . 0 0 . 0 0

NZ--1 N_ N_
0 0 . 0 0 • _22 +_ll _12

N_0 0 . 0 0 . N_
_22

- m

2lef t

Tk-1
r?

rig ht

m

0

2

The solution of the above system of equations for each interracial temperature harmonic makes

possible the determination of the coefficients C_ ) and D_ ) using Eq. (139). These, in turn,

determine the temperature field in each strip of the plate using either Eq. (128) or (129).

m

5 Mesh Sensitivity, Validation and Application Studies

The user-friendly formulation of HOTFGM, developed in Section 2, dispenses with the two-level

volume discretization employed in the original HOTFGM formulation wherein generic cells are fur-

ther discretized into subcells. In the user-friendly formulation the graded microstructure is built

up directly using subcells which play the role of fundamental subvolumes. This simplification in

the volume discretization, which also simplified the derivation of the interracial heat flux continuity
conditions, provided the basis for the efficient reformulation outlined in Section 3. Therefore. the

present section begins with the validation of the user-friendly formulation using the analytical solu-

tions developed in Section 4. This is accomplished in two steps. First, we examine the convergence
of the temperature field to the analytical solution as a function of the mesh discretization for the

problem of a homogeneous plate subjected to the thermal boundary conditions discussed in Sec-

tion 4. Once the convergence characteristics of the solution based on the user-friendly formulation

are established, we then consider the problem of a piece-wise uniformly graded plate for which

the analytical solution has also been derived in Section 4. This problem is subsequently re-solved

using the reformulation of HOTFGM with variable thermal conductivity in order to demonstrate

the reduction in the graded microstructure's volume dicretization obtained by assuming linearly

varying material properties. In the last example, a graded thermal barrier coating subjected to a
through-thickness thermal gradient is considered, and the differences in the solutions based on the

actual and homogenized microstructures are discussed.

5.1 User-Friendly Formulation

5.1.1 Mesh sensitivitystudy: homogeneous plate

Let us considera squareplate,whose sidesare unitlength (i.e.,a - b - 1),Figure 12,subjected

to the followingtwo setsof boundary conditions:

(1) • Tuft -- 100 °C, T_ght -- 200 °C, Ttop -- 100 °C, Tbottom -- 100 °C

(2) • Tle ft -- 100 °C, Tright -- 200 ° C, Ttop - 100 ° C, Tbottom -- 200 °C
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Figure 12. Problem definition and mesh discretization for a homogeneous plate.
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The first set produces a temperature field that is symmetric about a horizontal line halfway across

the plate's height, whereas the second set produces a temperature field that is symmetric about

a line connecting the upper left and lower right corners of the plate. Such temperature fields are

sufficiently complicated to test the higher-order theory's predictive capability. The plate's thermal

conductivity k has a constant value, i.e., k - 25 W/m-° C. Since the plate is homogeneous,

however, the temperature field does not depend on the conductivity under steady-state boundary

conditions. This provided an additional check on the user-friendly formulation's correctness as
verified during preliminary numerical tests.

The convergence behavior of the user-friendly formulation is investigated as a function of volume

discretization by dividing the plate into 4 x 4, 12 x 12, 32 x 32 uniformly-spaced subcells, Figure
12. The corresponding contour plots of the temperature distributions for the employed volume

discretizations are compared with the analytical solution in Figure 13 for the first set of applied

thermal boundary conditions. As is clearly seen in the contour plots, the temperature distribu-

tions obtained from the user-friendly formulation are symmetric with respect to the horizontal line

halfway across the plate's height irrespective of the volume discretization, and gradually approach

the analytical solution with increasing number of subcells. In the case of the 4 x 4 subcell mesh,
we obtain only an approximate temperature field which, nevertheless, exhibits the basic character-

istics of the analytical solution. Increasing the volume discretization to 12 x 12 subcells generates

a temperature field which appears quite close to the analytical solution except at the upper and

lower right corners where the boundary temperature distributions change suddenly, producing dis-
continuities at these corners. Increasing the mesh to 32 x 32 subcells eliminates these local corner

disturbances, producing smooth curve patterns in the temperature field which are visually the same
as those obtained from the analytical solution.

A more quantitive picture of the user-friendly formulation's convergence behavior with mesh

refinement is obtained by plotting the temperature distributions along specific cross sections. Three

horizontal cross sections and three vertical cross sections have been chosen as illustrated by the

arrows in Figure 12. The horizontal cross sections are situated at the elevations x3 - 0.0, 0.25, 0.5,

and the vertical cross sections are situated at x2 - 0.5, 0.75, 1.0. The cross sections include the lower

horizontal boundary defined by x3 - 0.0 and the right vertical boundary defined by x2 - 1.0. The

interior cross sections have been chosen such that they run along subcell interfaces. For example,

the cross-section situated at x3 - 0.25 runs along the horizontal interfaces that separate the sets of

subcells (/31) and (/32) in the case of the 4 x 4 subcell mesh. This same cross section runs along the

horizontal interfaces that separate the sets of subcells (/33) and (/34) for the 12 x 12 subcell mesh.

As we know from the user-friendly formulation, the temperature distributions along the differ-
ent interior cross sections can be obtained by using microvariables associated with the subcell on

either side of the common interface. Furthermore, recall that the thermal and heat flux continuity

conditions were applied in a surface-average sense. Therefore, the temperature distributions along

a given cross section separating two sets of subcells, obtained using two different sets of microvari-

ables associated with either set of subcells, will generally be different. However, these distributions

should approach the actual temperature distributions with increasing mesh refinement. Further-

more, the surface-averaged interracial temperatures, which exhibit piece-wise uniform distributions,

should approach the actual temperature distributions in a step-wise manner with increasing mesh
refinement.

In order to demonstrate the above behavior, three types of temperature distributions along

the chosen subcell interfaces have been generated for the interior cross sections. In the following

horizontal cross-section plots, we define the common interracial surface-averaged temperature as 2P,

the interracial temperature obtained using the microvariables of the subcells below the interfaces

as T +, and the interracial temperature obtained sing the microvariables of the subcells above the
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Figure 13. Temperature fields for the three mesh discretizations and first set of boundary

conditions. Comparison with the analytical solution.
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interfaces as T-. Similar notation is used for the vertical cross-section plots. In these cases, T +

indicates the interfacial temperature obtained using the microvariables of the subcells lying to

the left of the subcell interfaces and T- denotes the interracial temperature obtained using the

microvariables of the subcells lying to the right of the subcell interfaces. In the case of the boundary

subcells, only two curves are given since there is only one set of subcells forming the boundary.

As before, the designation T is used to denote the surface-averaged temperature distribution along

both the horizontal and vertical boundaries. The second curve is obtained using the properties of

the boundary subcells- for the lower horizontal boundary it is denoted by T- and for the right
vertical boundary it is denoted by T + for consistency with the established notation.

The temperature distributions along the interior horizontal cross sections at the two elevations

x3 - 0.25 and x3 - 0.5 for the first set of boundary conditions are shown in Figure 14. For the
4 x 4 subcell mesh, the temperature distributions calculated on the different sides of the subcell

interfaces in the x3 - 0.25 cross section shown in the left column of Figure 14 are quite different,

with discontinuities or jumps evident as the subcell vertical interfaces are traversed along the x2

direction. The differences, however, gradually disappear with increasing mesh refinement, including

the above-mentioned jumps. In the case of the 12 x 12 subcell mesh the differences are already quite

small and barely visually discernible, while in the case of the 32 x 32 subcell mesh the differences

cannot be identified visually. These distributions are graphically indistinguishable from the actual

distributions obtained from the analytical solution (not shown). The surface-averaged temperature

distributions also gradually converge to the actual temperature distributions in a step-wise manner.

The corresponding distributions in the x3 - 0.5 cross section are shown in the right column

of Figure 14. The same observations with regard to the solution's convergence with increasing

mesh refinement hold in this cross section as in the preceding one, with one important difference

however. Interestingly, we only see two curves in this cross section, namely the surface-averaged
temperature distribution T and the two T + and T- distributions superposed on each other. This

is due to the symmetric boundary conditions employed in this example, which in turn produce a

temperature field that is symmetric with respect to the x3 - 0.5 cross section. This, in turn, ensures

that the subcell microvariables on either side of the line of symmetry are the same, producing the

same interracial temperature distributions. This behavior is clearly captured by the user-friendly
formulation, providing further evidence of its correctness.

Figure 15 shows the temperature distributions along the vertical cross sections x2 - 0.5 and

x2 = 0.75 as a function of the volume discretization for the first set of boundary conditions. In

this case, the temperature distributions are not symmetric about any of the two cross sections,

and consequently three distinct sets of interracial temperature distributions, T, T + and T- are

present. Symmetry exists only about the x3 - 0.5 cross section, and this is reflected in each of the

individual distributions for each cross section (since the temperature distributions are given as a

function of the x3 coordinate) and for each volume discretization. As in the case of the horizontal

cross sections, the difference between the T + and T- distributions vanish with increasing mesh

refinement (including the jumps at the subcell horizontal interfaces), while the T distribution

approaches the actual distribution in a step-wise manner.

The temperature distributions at the two external boundaries x3 = 0 and x2 - 1 are given in

Figure 16 for the three volume discretizations and the first set of boundary conditions. From these

figures, we conclude that the T- temperature distributions for the lower horizontal boundary, shown

in the left column of Figure 16, and the T + temperature distributions for the right vertical boundary,
shown in the right column of Figure 16, gradually approach the applied boundary conditions.

However, even with 32 x 32 subcell mesh, they exhibit some fluctuations at the lower and upper right

corners of the plate. That is because the applied temperature distributions possess discontinuities

at these corners, requiring further mesh discretization in the vicinity of these points.
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The corresponding temperature contour plots and cross section distributions for the second set

of boundary conditions are given in Figures 17 through 20. The full field contour distributions

shown in Figure 17 illustrate temperature field symmetry with respect to the cross section passing
through the upper left and lower right corners of the plate for all three volume discretizations.

As in the preceding case, the results obtained from the user-friendly formulation of the higher-

order theory converge to the actual temperature distribution obtained from the analytical solution
with increasing mesh refinement. The full field temperature distribution obtained from the 32 × 32

subcell mesh is visually indistinguishable from the distribution generated by the analytical solution.

Similar observations with regard to the convergence behavior with increasing mesh refinement hold

for the cross section temperature distributions along interfaces separating the interior subcells,

presented in Figures 18 and 19, and along external boundaries presented in Figure 20. In this case,

the temperature distributions are not symmetric about the chosen cross sections as expected, and

therefore three distinct sets of interfacial distributions are evident in the interior, which converge
with increasing mesh refinement at the same rate as before.

In summary, as observed from the above figures, whatever interfaces are considered, for either

set of the boundary conditions (Figures 13-15 or Figures 17-20), the differences between the tem-

perature distributions based on the microvariables belonging to adjacent subcells decrease with

increasing number of subcells, while the surface-averaged temperature distributions approach the

actual distributions in a step-wise manner, with the step increments becoming increasingly smaller.

In other words, the greater the mesh refinement, the better the point-wise convergence or accuracy
to the actual distribution.

5.1.2 Validation: discretely graded plate

In this section, the results from the user-friendly formulation for a plate with discretely graded

thermal conductivity in a piecewise uniform manner are compared with the corresponding analytical

solution outlined in Section 4 for the Nz-strip plate. The effect of thermal conductivity variation
on the temperature field is also investigated.

We consider the same boundary value problem discussed in the preceding section but limit the

investigation to the first type of boundary conditions, i.e., the plate is subjected to a temperature of

200°C on the right boundary and a temperature of 100°C on the remaining boundaries, Figure 21.

The plate is divided into vertical strips and the thermal conductivity k (assuming isotropic thermal

properties) is assigned a different constant value in each strip, producing a piecewise uniformly
graded plate. The overall variation of the thermal conductivity is given by exponential functions

in the x2 coordinate. Two different thermal conductivity variations are employed. One is an
exponentially increasing function of x2

k = 0.5e5_2

while the other is an exponentially decreasing function of x2

k = 60e -5x2

These continuous functions are employed to produce piecewise uniform variations as follows.

The plate is divided into 25 vertical strips of equal width and the above functions are used to

calculate the thermal conductivity at the center of each strip, which is then assumed to remain

constant in that strip, as shown in the two lower graphs of Figure 21. The analytical solutions

for this problem are then obtained based on the N_-strip solution outlined in Section 4 using
a 200 harmonic representation of the temperature field in each of the 25 strips. The correspond-

ing user-friendly formulation solution is obtained by dividing the plate into 25 x 25 subcells of equal
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dimensions, shown in the upper right schematic of Figure 21, and assigning the same values of

thermal conductivity in each vertical column of subcells as in the case of the analytical solution.

The above boundary conditions and manner of grading will produce a temperature field which is

symmetric about the horizontal cross section halfway across the plate's height.

The comparison of the full field temperature distributions obtained from the analytical and

higher-order theory solutions is given in Figure 22 for the exponentially increasing (top) and de-

creasing (bottom) thermal conductivity variations. In both cases, excellent agreement is evident

throughout almost the entire plate with the exception of isolated regions in the vicinity of the

upper and lower right corners. These regions exhibit large temperature gradients caused by the

temperature discontinuities at the corners themselves. Local mesh refinement is therefore needed

to produce better correlation in these regions in the case of HOTFGM.

As is also observed in Figure 22, when the thermal conductivity increases in the x2 direction

according to the function k - 0.5e 5z2, the temperature field is shifted towards the left vertical

boundary with respect to the temperature field in the homogeneous plate subjected to the same

boundary conditions shown in Figure 13. Alternatively, when the thermal conductivity decreases

in the x2 direction according to the function k = 60e -5x2, the temperature field is shifted towards

the right vertical boundary. This can be explained by the Fourier's heat conduction law,

q}fl_) = -k}_'Y)OjT(_'Y)

where the temperature field is seen to be modulated by the spatial variation in thermal conductivity.

5.2 Efficient Reformulation: Variable Thermal Conductivity

In this section, the efficient reformulation of the higher-order theory described in Section 3 is em-

ployed to generate the temperature field in a continuously graded platewhose thermal conductivity

variations are described by the exponential functions of the preceding section. To mimic the ex-

ponentially varying thermal conductivity in the x2 direction, three volumetric discretizations were

employed. In all cases the plate was discretized into 25 subcells along the x3 direction, while along

the x2 direction the plate was discretized into 10 and 12 uniformly spaced, and 12 nonuniformly

spaced subcells, resulting in two uniformly spaced 10 x 25 and 12 x 25 microstructures and one

nonuniformly spaced 12 x 25 microstructure. The thermal conductivity k__) in each vertical col-

umn of (/37) subcells was varied linearly with the local subcell coordinate 2__) such that continuity

was preserved from one column of subcells to another along the global x2 coordinate. The values

of the thermal conductivity at the subcell boundaries were calculated using the exponential func-

tions employed in the preceding section, and subsequently employed in the construction of linear

approximation of the thermal conductivity k_ 3_) in each subcell. Figure 23 illustrates the piece-

wise linearly varying k_ _) in the manner that approximates the exponentially increasing thermal

conductivity for the three volume discretizations. The thermal conductivity in the x3 direction,

k_ 3_), was kept constant in each column of subcells, but varied from one column of subcells to the

next by taking the average value of the thermal conductivities at the subcell boundaries calculated

from the exponential functions. The general expressions for variable thermal conductivities in the

x2 and X3 directions, k_z_) and k_z_), respectively, thus reduce to the following expressions,

k_Z_) - _(Z_) -(Z_) -(Z)_20 + tg22 X2

k_) - _(_),430
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The full field temperature distributions obtained for the 10 x 25 subcell mesh with the exponen-

tially increasing (top) and decreasing (bottom) thermal conductivities, generated using the efficient

reformulation with locally linearly varying conductivities, are presented in the right column of Fig-

ure 24. The corresponding predictions generated using the user-friendly formulation with 25 x 25

subcell mesh of the preceding section are included in the left column of Figure 24 for comparison.

The agreement is very good everywhere except in the upper and lower right corner regions where
the temperature jumps occur. Increasing the mesh size to uniformly spaced 12 x 25 subcells im-

proves the agreement in these corner regions, as seen in the left column of Figure 25. Retaining
the same mesh size but preferentially increasing the number of subcells in the corner regions where

large thermal gradients occur produces essentially the same temperature distributions in the entire

linearly graded plate as those in the discretely graded plate, as seen in the right column of Figure

25. This indicates that a smaller number of subcells with local linearly varying thermal conduc-

tivity is required to capture the essential character of the temperature field in a discretely graded
plate with piecewise uniform thermal conductivity.
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Figure 24. Temperature field comparison between user-friendly formulation and efficient

reformulation of HOTFGM-2D.
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Figure 25. Temperature field comparison between evenly and nonevenly distributed thermal

conductivity predicted by the efficient reformulation of HOTFGM-2D with linearly varying

thermal conductivity.
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5.3 A Thermal Barrier Coating Application

In this section, the temperature field in a graded thermal barrier coating subjected to a through-

thickness temperature gradient is investigated using the efficient reformulation of the higher-order

theory. The zirconia coating is graded with metallic inclusions such that the volume fraction of the

inclusion phase increases with increasing distance from the hot surface of the coating exposed to the

temperature of 200°C, Figure 26. The cold surface where the metallic inclusion content is greatest

is exposed to 100°C. The coating's graded microstructure, which is periodic along the vertical

direction, is simulated by the zero heat flux boundary conditions on the top and bottom surfaces

of the coating. The thermal conductivities of the zirconia coating and the metallic inclusions were

taken to be 0.5 and 100 W/m _o C, respectively.

1
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Figure 26. Actual microstructure and volume fraction distribution of the inclusion phase.

The thermal analysis is conducted using the actual graded microstructure seen in Figure 26

which has been discretized into 10 × 100 subcell mesh, and two additional discretely graded and

linearly graded microstructures with local homogenization. The locally homogenized microstruc-

tures were obtained from the actual microstructure by first determining the local metallic inclusion

content in each of the nine regions into which the actual microstructure was divided in the manner

shown in Figure 26. Subsequently, each region with its local inclusion content was modeled using

HOTFGM as a strip containing 16 uniformly spaced metallic inclusions subjected to a known macro-

scopic temperature gradient along its length and zero heat flux on the top and bottom surfaces,

Figure 27.
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Figure 27. Homogenized thermal conductivity vs fiber volume fraction.

The effective thermal conductivity for such strip was calculated from the ratio of the average heat

flux obtained from the solution of the specified boundary-value problem and the negative of the

imposed average or macroscopic temperature gradient. The choice of 16 uniformly spaced metallic

inclusions was dictated by the asymptotic behavior of the average thermal conductivity as a func-

tion of the inclusion number. The results of the calculations are included in Figure 27 in the form

of a graph of the macroscopic thermal conductivity as a function of the metallic inclusion volume

fraction which corresponds to each of the regions shown in Figure 26. The resulting discretely and

linearly graded in a piecewise manner thermal conductivities along the actual coating's length are

given in Figure 28. The piecewise linearly graded microstructure was obtained from the piecewise

discretely graded microstructure by using the center points of adjacent subcells to define new sub-

cells with linearly varying conductivities. Due to the homogenization of the microstructure and the

applied boundary conditions which produce a one-dimensional temperature field, the homogenized
microstructures were represented by 1 x 9 subcell meshes.

The full field temperature distributions in the actual and homogenized graded coatings are

given in Figure 29. The temperature distribution in the actual coating is clearly two-dimensional,

with the disturbances created by the inclusion presence more pronounced near the upper and lower

boundaries than in the interior. In contrast, the temperature fields in the homogenized coatings

are clearly one-dimensional, with a slight shift present between the discretely and linearly graded

homogenized microstructures. A more quantitative picture of the differences in the temperature dis-

tributions among the three microstructures is obtained by comparing the cross section plots. These

are presented in the top portion of Figure 30 with three cross section temperature distributions
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Figure 28. Homogenized thermal conductivity as a function of position.

in the actual coating and one in each of the two homogenized coatings. The staircase tempera-

ture pattern observed in the actual coating is due to the pronounced differences in the thermal

conductivities of the metallic inclusion and ceramic matrix phases. In contrast, the temperature

distributions in the homogenized coatings are smoothly and continuously increasing functions of

the coordinate along the coating's length, with the differences between the two distributions visible

near the hot surface. The bottom portion of Figure 30 compares the temperature distribution in

the actual coating averaged across the coating's width with the distributions in the homogenized

coatings. In both cases, the temperature distributions in the actual coating, averaged or unaveraged

across the coatings width, are above the temperature distribution in the discretely graded coating.

This is not true in the case of the linearly graded coating wherein the temperature distribution is

actually higher in some regions near the hot surface than the temperature distribution in the actual

coating.

Despite the fact that the temperature distributions in the two homogenized coatings are almost

identical with the exception of the region near the hot surface, the average heat flux calculated

in the homogenized coating with piecewise linear variation of the thermal conductivity is closer to

the average heat flux in the actual coating than the averag flux in the discretely graded coating.

These values can be used to calculate the macroscopic thermal conductivity of the coating across

its thickness as shown below,

_2 ct ual __

inear __

- 9.787 ==_ _ctual _

- 9.768 ===_ _linear __

- 9.841 ==_ k2di_t_ =iscrete __

_ctual __ 0.9787

AT/L

_in_ = 0.9768
 T/L

_2iscrete -- 0.9841

 T/L
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whereAT -- 100°C is the temperature difference between the top and bottom surfaces of the

coating and L - 100 is the coating's thickness. Consequently_ the effective thermal conductivity

of the entire coating based on the linearly graded microstructure is closer to the effective thermal

conductivity of the actual coating than the discretely homogenized coating. Thus it appears that

the linear thermal conductivity variation is more appropriate for estimating the effective thermal

conductivities of actual graded microstruct.ures than the discrete thermal conductivity variation
when the coating's microstructure is relatively coarse.

6 Conclusions and Future Work

The goal of this research was to develop a generic cell-free, subcell-based formulation of the higher-

order theory for functionally graded materials developed by Aboudi et al. (1999), which would

then provide a basis for a more efficient reformulation using the local/global conductivity matrix

approach. In order to extend the higher-order theory's range of applicability, variable thermal

conductivity capability at the subcell level was also incorporated into the efficient reformulation.

This investigation was undertaken because the original formulation of HOTFGM is computationally

intensive. This, in turn, limits the size of problems that can be analyzed due to the large number

of equations required to mimic realistic microstructures of functionally graded materials.

In order to validate both the user-friendly formulation and the reformulation of HOTFGM with

variable thermal conductivity, analytical solutions to the steady-state heat equation were devel-

oped for homogeneous and layered plates. The homogeneous plate solution was used to study the

convergence behavior of the user-friendly formulation as a function of mesh discretization. The

layered-plate solution was employed to investigate temperature distributions in discretely graded

plates. Comparison between the results obtained from the user-friendly formulation and analytical

solutions validates the simplified set of equations of the higher-order theory based on the more

straightforward volume discretization which does not differentiate between generic cells and sub-

cells. In particular, identical results were obtained for a homogeneous plate subjected to thermal

boundary conditions that produced internal temperature fields with different symmetries. The so-

lution's convergence was demonstrated to be quite rapid. A piecewise uniformly graded plate with

exponentially varying thermal conductivity was also analyzed and the results obtained from the

higher-order theory coincided with the analytical solution for a layered plate.

The user-friendly formulation is easy to understand and implement. More importantly, it pro-

vides a basis for the development of an effic_nt reformulation based on the local/global conductivity
matrix approach, which was also Successful]3 accomplished, taking the locally variable thermal con-

ductivity at the subcell level into account. The efficient reformulation has significantly decreased

the number of equations. The reduction of the number of equations by as much as 60% for some

problems has enhanced the theory's capability, enabling solution of more practical and complicated

problems. Comparison of temperature fields in piecewise uniformly graded and linearly graded

cases, both of which approximate the same spatially varying thermal conductivity at the global

scale, revealed that the same temperature distribution can be obtained with a smaller volume dis-

cretization when the thermal conductivity is allowed to vary at the subcell level. Therefore, the

efficient reformulation of the higher-order theory with variable thermal conductivity made possible

the solution of a wide range of problems requiring large number of subcells. Thus, after transi-

tion from the user-friendly formulation to reformulation, the temperature distribution prediction

for arbitrary microstructures under many circumstances can be accurately accomplished in a more
efficient manner.
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However, this research was limited to steady-state heat conduction of graded materials in two

dimensions. In order to further extend the theory's range of applicability to practical problems_
further research is required. The next step is to extend the presented efficient reformulation to

enable the analysis of mechanical problems. As the first step, the two-dimensional elastic refor-

mulation of the higher-order theory with linearly varying material properties within each subcell

will be developed and then extended to three dimensions. This will complement the efficient ther-

momechanical reformulation of the higher-order theory with constant subcell material properties

recently completed by Bansal (2002). Further, in order to make full use of material properties and

optimize structural design, it is necessary to incorporate viscoelastic, viscoplastic or plastic effects

of material response into the theoretical framework. Therefore, viscoelastic, viscoplastic and plastic

capabilities should be included in the reformulated higher-order theory. Fracture analysis is also an

important area of FGMs. Therefore, the capability to analyze fracture mechanics problems should
also be included in the reformulated higher-order theory.
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